Integration of Artificial Neural Network and the Optimal GNSS Satellites’ Configuration for Improving GNSS Positioning Techniques (A Case Study in Egypt)
, and
Apr 22, 2022
About this article
Published Online: Apr 22, 2022
Page range: 18 - 46
Received: Jul 07, 2021
Accepted: Feb 02, 2022
DOI: https://doi.org/10.2478/arsa-2022-0002
Keywords
© 2022 Mustafa K. Alemam et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Characteristics of IGS satellite ephemerides and clock products (2019)
Type | Accuracy | Latency | Updates | Sample interval | |
---|---|---|---|---|---|
|
|||||
Broadcast | Orbits | ~100 cm | Real time | -- | Daily |
Sat. clocks |
~5 ns RMS ~2.5 ns SD |
||||
Ultra-rapid (predicted half) | Orbits | ~5 cm | Real time | Four times/day | 15 min |
Sat. clocks |
~3 ns RMS ~1.5 ns SD |
||||
Ultra-rapid (observed half) | Orbits | ~3 cm | 3–9 h | Four times/day | 15 min |
Sat. clocks |
~150 ps RMS ~50 ps SD |
||||
Rapid | Orbits | ~2.5 cm | 17–41 h | One time/day | 15 min |
Sat. and stn clocks |
~75 ps RMS ~25 ps SD |
5 min | |||
Final | Orbits | ~2.5 cm | 12–18 days | One time/week | 15 min |
Sat. and stn clocks |
~75 ps RMS ~20 ps SD |
Sat.: 30 s Stn.: 5 min |
|||
|
|||||
Final | Orbits | ~3 cm | 12–18 days | Every Thursday | 15 min |
where: ns = nanosecond, ps = picosecond, UTC =Universal Coordinated Time, RMS = Root Mean Square errors, SD = standard deviation |
The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 1/3)
Transfer functions (hidden–output) layer | Binary numbers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | ||||||||
σx (m) | MSE (m) | NOF | σY (m) | MSE (m) | NOF | σZ(m) | MSE (m) | NOF | ||
a) Baltim station | Tansig–Purelin | 0.112 | 0.008 | 1 | 0.404 | 0.020 | 6 | 0.254 | 0.025 | 4 |
Tansig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Tansig–Tansig | 0.103 | 0.005 | 2 | 0.319 | 0.007 | 7 |
|
0.003 | 5 | |
Logsig–Purelin |
|
|
|
|
|
|
0.057 |
|
|
|
Logsig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Logsig–Tansig | 0.171 | 0.038 | 3 | 0.495 | 0.085 | 13 | 0.282 | 0.040 | 19 | |
Purelin–Purelin | 1.048 | 0.094 | 7 | 0.955 | 0.087 | 2 | 0.489 | 0.054 | 6 | |
Purelin–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Purelin–Tansig | 0.537 | 0.041 | 7 | 0.805 | 0.049 | 6 | 0.669 | 0.085 | 7 | |
Purelin–Purelin | 0.113 | 0.274 | 0.158 | 2 × 10-6 | 0 | |||||
The other constellations of transfer functions | NaN | NaN | NaN | NaN | 100 | |||||
b) Suez station | ||||||||||
Tansig–Purelin | 0.165 | 0.004 | 3 | 0.227 | 0.013 | 3 | 0.186 | 0.007 | 2 | |
Tansig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Tansig–Tansig | 0.183 | 0.005 | 3 | 0.185 | 0.009 | 5 | 0.196 | 0.017 | 7 | |
Logsig–Purelin | ||||||||||
Logsig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Logsig–Tansig | 0.245 | 0.021 | 7 | 0.401 | 0.005 | 6 | 0.293 | 0.004 | 6 | |
Purelin–Purelin | 0.498 | 0.081 | 6 | 0.554 | 0.071 | 3 | 0.617 | 0.032 | 3 | |
Purelin–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Purelin–Tansig | 0.632 | 0.035 | 6 | 0.488 | 0.045 | 4 | 0.650 | 0.035 | 10 | |
Purelin–Purelin | 0.171 | 0.206 | 0.256 | 3 × 10-8 | 1 | |||||
The other constellations of transfer functions | NaN | NaN | NaN | NaN | 100 |
The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 2/3)
Transfer functions (hidden–output) layer | Binary numbers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | ||||||||
σx (m) | MSE (m) | NOF | σY (m) | MSE (m) | NOF | σZ (m) | MSE (m) | NOF | ||
c) Helwan station | Tansig–Purelin | 0.007 | 3 | 0.156 | 0.008 | 3 | 0.123 | 0.009 | 3 | |
Tansig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Tansig–Tansig | 0.065 | 0.005 | 5 | 0.192 | 0.012 | 5 | 0.099 | 5 | ||
Logsig–Purelin | 0.048 | 0.010 | ||||||||
Logsig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Logsig–Tansig | 0.275 | 0.013 | 2 | 0.352 | 0.007 | 6 | 0.356 | 0.032 | 6 | |
Purelin–Purelin | 0.520 | 0.027 | 4 | 0.581 | 0.035 | 4 | 0.492 | 0.009 | 7 | |
Purelin–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Purelin–Tansig | 0.452 | 0.008 | 5 | 0.611 | 0.041 | 5 | 0.470 | 0.036 | 5 | |
Purelin–Purelin | 0.157 | 0.305 | 0.276 | 5 × 10-7 | 2 | |||||
The other constellations of transfer functions | NaN | NaN | NaN | NaN | 100 | |||||
d) Cairo station | ||||||||||
X | Y | Z | ||||||||
σx (m) | MSE (m) | NOF | σY (m) | MSE (m) | NOF | σZ (m) | MSE (m) | NOF | ||
Tansig–Purelin | 0.143 | 0.007 | 4 | 0.031 | 0.010 | 3 | 0.133 | 0.008 | 2 | |
Tansig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Tansig–Tansig | 0.127 | 3 | 0.108 | 0.008 | 4 | 0.186 | 0.015 | 3 | ||
Logsig–Purelin | 0.004 | |||||||||
Logsig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Logsig–Tansig | 0.272 | 0.009 | 5 | 0.358 | 0.031 | 5 | 0.296 | 0.002 | 5 | |
Purelin–Purelin | 0.382 | 0.012 | 4 | 0.399 | 0.023 | 3 | 0.488 | 0.047 | 7 | |
Purelin–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Purelin–Tansig | 0.484 | 0.023 | 6 | 0.511 | 0.045 | 5 | 0.388 | 0.071 | 4 | |
Purelin–Purelin | 0.273 | 0.242 | 0.338 | 0.006 | 0 | |||||
The other constellations of transfer functions | NaN | NaN | NaN | NaN | 100 |
The tested parameters in the ANN algorithm
Test no. | Transfer function | ANN type | NHL | NON | NOI | |
---|---|---|---|---|---|---|
1 |
|
X | Fit net | 1 | 10 | 100 |
2 |
|
The optimal at test 1 | X | 1 | 10 | 100 |
3 |
|
The optimal at test 1 | The optimal at test 2 | X | 10 | 100 |
4 |
|
The optimal at test 1 | The optimal at test 2 | The optimal at test 3 | X | 100 |
5 |
|
The optimal at test 1 | The optimal at test 2 | The optimal at test 3 | The optimal at test 4 | X |
The SD of X, Y, and Z coordinates, 3D position error, and elapsed time for three different types of ANN
Station | Pattern net | Fit net | Cascade forward net | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σx |
σY |
σZ |
σP |
Elapsed time (s) | σx |
σY |
σZ |
σP |
Elapsed time |
σx |
σY |
σZ |
σP |
Elapsed time |
|
|
0.090 | 0.263 | 0.071 | 0.287 | 44.4 | 0.056 | 0.219 | 0.030 | 0.228 | 38.8 | 0.043 | 0.188 | 0.021 | 0.194 | 27.9 |
|
0.078 | 0.118 | 0.157 | 0.211 | 47.3 | 0.072 | 0.101 | 0.106 | 0.163 | 36.2 | 0.077 | 0.099 | 0.103 | 0.162 | 24.4 |
|
0.127 | 0.193 | 0.089 | 0.248 | 45.8 | 0.089 | 0.152 | 0.076 | 0.192 | 37.4 | 0.084 | 0.146 | 0.079 | 0.186 | 27.2 |
|
0.161 | 0.068 | 0.118 | 0.211 | 46.9 | 0.115 | 0.044 | 0.066 | 0.140 | 35.1 | 0.084 | 0.029 | 0.048 | 0.101 | 28.9 |
|
0.227 | 0.224 | 0.448 | 0.550 | 49.7 | 0.179 | 0.198 | 0.431 | 0.507 | 39.5 | 0.147 | 0.179 | 0.425 | 0.484 | 26.8 |
The averages of SDs in the directions of the coordinate axes, 3D position error, and elapsed time for the four groups of initialization numbers
Station | Group 1 | Group 2 | Group 3 | Group 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nt values | Elapsed time (h) | Nt values | Elapsed time (h) | Nt values | Elapsed time (h) | Nt values | Elapsed time (h) | |||||||||
1–10 | 0.02 | 10–100 | 0.15 | 100–1000 | 1.5 | 1000–10,000 | 15.5 | |||||||||
σm(X) |
σm(Y) |
σm(Z) |
σm(P) |
σm(X) |
σm(Y) |
σm(Z) |
σm(P) |
σm(X) |
σm(Y) |
σm(Z) |
σm(P) |
σm(X) |
σm(Y) |
σm(Z) |
σm(P) |
|
|
0.080 | 0.195 | 0.040 | 0.215 | 0.068 | 0.174 | 0.036 | 0.191 | 0.042 | 0.137 | 0.019 | 0.145 | 0.017 | 0.080 | 0.009 | 0.083 |
|
0.094 | 0.128 | 0.105 | 0.190 | 0.087 | 0.119 | 0.101 | 0.179 | 0.068 | 0.085 | 0.082 | 0.137 | 0.045 | 0.035 | 0.044 | 0.074 |
|
0.067 | 0.177 | 0.086 | 0.208 | 0.058 | 0.142 | 0.067 | 0.168 | 0.052 | 0.107 | 0.049 | 0.129 | 0.034 | 0.065 | 0.030 | 0.080 |
|
0.083 | 0.044 | 0.035 | 0.100 | 0.066 | 0.036 | 0.036 | 0.084 | 0.047 | 0.030 | 0.036 | 0.066 | 0.026 | 0.023 | 0.024 | 0.043 |
|
0.184 | 0.216 | 0.572 | 0.639 | 0.164 | 0.196 | 0.453 | 0.520 | 0.134 | 0.172 | 0.350 | 0.413 | 0.103 | 0.125 | 0.249 | 0.297 |
The coordinates’ differences between the known points and the output data, and the position errors for the three main stages and IGS final orbits in the case of GNSS-dual frequency
Station | Post-processing (broadcast ephemerides) | Post-processing (final orbits) | Classification algorithm | ANN algorithm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dX |
dY |
dZ |
Position error |
dX |
dY |
dZ |
Position error |
dX |
dY |
dZ |
Position error |
dX |
dY |
dZ |
Position error |
|
|
0.050 | 0.020 | 0.003 | 0.054 | 0.001 | 0.002 | 0.004 | 0.005 | 0.034 | 0.011 | 0.009 | 0.037 | 0.011 | 0.007 | 0.008 | 0.015 |
|
0.006 | 0.003 | 0.006 | 0.009 | 0.003 | 0.007 | 0.003 | 0.008 | 0.003 | 0.002 | 0.004 | 0.005 | 0.002 | 0.003 | 0.004 | 0.005 |
|
0.047 | 0.040 | 0.019 | 0.065 | 0.015 | 0.015 | 0.011 | 0.024 | 0.024 | 0.021 | 0.024 | 0.040 | 0.017 | 0.016 | 0.021 | 0.031 |
|
0.022 | 0.014 | 0.013 | 0.029 | 0.015 | 0.010 | 0.019 | 0.026 | 0.017 | 0.012 | 0.015 | 0.026 | 0.011 | 0.007 | 0.012 | 0.018 |
|
0.157 | 0.051 | 0.322 | 0.362 | 0.044 | 0.083 | 0.110 | 0.145 | 0.103 | 0.062 | 0.220 | 0.251 | 0.051 | 0.021 | 0.153 | 0.163 |
Precision improvement due to applying classification and ANN algorithms in the two cases of observations
Percentage of improvement (%) | ||||||
---|---|---|---|---|---|---|
Station | Single-frequency observations | Dual-frequency observations | ||||
Classification algorithm | ANN algorithm | Classification algorithm | ANN algorithm | IGS final orbits | ||
|
28 | 79 | 31 | 72 | 91 | |
|
37 | 70 | 44 |
|
11 | |
|
39 | 66 | 38 | 52 | 63 | |
|
16 | 50 | 10 |
|
10 | |
|
32 | 62 | 31 | 55 | 60 |
The differences in coordinates between the known points and the output data, and the position errors for the three main stages in the case of GNSS-single frequency
Station | Post-processing (broadcast ephemerides) | Classification algorithm | ANN algorithm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
dX |
dY |
dZ |
Position error |
dX |
dY |
dZ |
Position error |
dX |
dY |
dZ |
Position error |
|
|
0.118 | 0.309 | 0.046 | 0.334 | 0.090 | 0.220 | 0.047 | 0.242 | 0.031 | 0.06 | 0.021 | 0.071 |
|
0.145 | 0.262 | 0.134 | 0.328 | 0.104 | 0.141 | 0.112 | 0.208 | 0.052 | 0.054 | 0.063 | 0.098 |
|
0.123 | 0.277 | 0.204 | 0.365 | 0.075 | 0.190 | 0.092 | 0.224 | 0.078 | 0.081 | 0.051 | 0.123 |
|
0.093 | 0.045 | 0.054 | 0.117 | 0.081 | 0.046 | 0.031 | 0.098 | 0.042 | 0.027 | 0.030 | 0.058 |
|
0.286 | 0.330 | 0.992 | 1.084 | 0.190 | 0.241 | 0.675 | 0.741 | 0.101 | 0.132 | 0.381 | 0.416 |
Data sources
Station | Station type | GNSS instrument | Reference coordinates | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | Ellipsoidal height, m | Source | |||||||
° | ′ | ″ | ° | ′ | ″ | |||||
|
IGS | Leica GRX1200 | 35 | 23 | 31.46180 | 31 | 35 | 35.5288 | 31.834 | SOPAC |
|
IGS | Leica RS500 | 34 | 45 | 47.31050 | 30 | 35 | 51.38602 | 886.829 | SOPAC |
|
Test | Trimble R8 | 31 | 04 | 49.15000 | 31 | 35 | 45.42070 | 31.163 | CSRS |
|
Test | Trimble R8 | 32 | 36 | 22.45620 | 30 | 07 | 09.53080 | 53.827 | CSRS |
|
Test | Trimble R8 | 31 | 20 | 37.30370 | 29 | 51 | 33.72150 | 135.055 | CSRS |
|
Test | Leica GR10 | 31 | 14 | 16.45330 | 30 | 02 | 43.33490 | 68.268 | CSRS |
|
Test | Ashtech Z-Xtreme | 31 | 10 | 19.90010 | 27 | 11 | 12.12040 | 91.420 | CSRS |
The parameters involved in the ANN algorithm
Epoch | Goal | Max_fail | Min_fail | Mu | Learning rate |
---|---|---|---|---|---|
1000 | 0 | 6 | 1e-7 | 0.001 | 0.01 |
The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 3/3)
Transfer functions (hidden–output) layer | Binary numbers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | ||||||||
σx (m) | MSE (m) | NOF | σY (m) | MSE (m) | NOF | σZ (m) | MSE (m) | NOF | ||
e) Assiut station | Tansig–Purelin | 0.219 | 0.008 | 3 | 0.327 | 0.010 | 1 | 0.530 | 0.016 | 6 |
Tansig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Tansig–Tansig | 0.177 | 4 | 0.294 | 0.013 | 2 | 0.549 | 0.017 | 5 | ||
Logsig–Purelin | 0.006 | |||||||||
Logsig–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Logsig–Tansig | 0.314 | 0.009 | 5 | 0.470 | 0.023 | 4 | 0.640 | 0.022 | 7 | |
Purelin–Purelin | 0.433 | 0.014 | 4 | 0.402 | 0.036 | 2 | 0.691 | 0.035 | 14 | |
Purelin–Logsig | NaN | NaN | 100 | NaN | NaN | 100 | NaN | NaN | 100 | |
Purelin–Tansig | 0.503 | 0.071 | 4 | 0.630 | 0.610 | 0 | 0.747 | 0.051 | 15 | |
Purelin–Purelin | 0.259 | 0.301 | 0.606 | 0.003 | 7 | |||||
The other constellations of transfer functions | NaN | NaN | NaN | NaN | 100 |