Open Access

Emerging applications of nanotechnology in livestock: Updates and perspectives

, , , ,  and   
Aug 26, 2025

Cite
Download Cover

Abdelkader H., Hussain S.A., Abdullah N., Kmaruddin S. (2018). Review on micro-encapsulation with chitosan for pharmaceuticals applications. MOJ Curr. Res. Rev., 1: 77–84. Search in Google Scholar

Abedin S.N., Baruah A., Baruah K.K., Kadirvel G., Katiyar R., Khargharia G., Bora A., Dutta D.J., Sinha S., Tamuly S., Phookan A., Deori S. (2023). In Vitro and In Vivo Studies on the Efficacy of Zinc-Oxide and Selenium Nanoparticle in Cryopreserved Goat (Capra hircus) Spermatozoa. Biol. Trace Elem. Res., 201: 4726–4745. Search in Google Scholar

Ahmad S.U., Li B., Sun J., Arbab S., Dong Z., Cheng F., Zhou X., Mahfuz S., Zhang J. (2021). Recent advances in microencapsulation of drugs for veterinary applications. J. Vet. Pharmacol. Ther., 44: 298–312. Search in Google Scholar

Ahmed T.A., Aljaeid B.M. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 10: 483–507. Search in Google Scholar

Albuquerque J., Casal S., Páscoa R.N.M.J., Van Dorpe I., Fonseca A.J.M., Cabrita A.R.J., Neves A.R., Reis S. (2020). Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Sci. Rep., 10: 6830. Search in Google Scholar

Alipio M., Villena M.L. (2023). Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health, 27: 100369. Search in Google Scholar

Almeida C.F., Faria M., Carvalho J., Pinho E. (2024). Contribution of nanotechnology to greater efficiency in animal nutrition and production. J. Anim. Physiol. Anim. Nutr., 108: 1430–1452. Search in Google Scholar

Al-Nemrawi N.K., Darweesh R.S., Al-Shriem L.A., Al-Qawasmi F.S., Emran S.O., Khafajah A.S., Abu-Dalo M.A. (2022). Polymeric nanoparticles for inhaled vaccines. Polymers, 14: 4450. Search in Google Scholar

Ambrosio N., Voci S., Gagliardi A., Palma E., Fresta M., Cosco D. (2022). Application of biocompatible drug delivery nanosystems for the treatment of naturally occurring cancer in dogs. J. Funct. Biomater., 13: 116. Search in Google Scholar

Arshad R., Gulshad L., Haq I.U., Farooq M.A., Al-Farga A., Siddique R., Manzoor M.F., Karrar E. (2021). Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr., 9: 3354–3361. Search in Google Scholar

Ashizawa K. (2019). Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi, 139: 237. Search in Google Scholar

Attia M.A., Essa E.A., Elebyary T.T., Faheem A.M., Elkordy A.A. (2021). Brief on recent application of liposomal vaccines for lower respiratory tract viral infections: from influenza to COVID-19 vaccines. Pharmaceuticals, 14: 1173. Search in Google Scholar

Attia M.S., El Nasharty M.A., Rabee M.M., Mohammed N.N., Mohamed M.M., Hosny S.I., Abd El-Wahab A.G., Mahmoud A.G., Abd Elmaged E.M., Afify H.G., Abdel-Mottaleb M.S.A. (2024). Ionotropically cross-linked polymeric nanoparticles for drug delivery. In Ionotropic Cross-Linking of Biopolymers, pp. 301–353. Elsevier. Search in Google Scholar

Avinash B., Venu R., Prasad T.N., Alpha Raj M., Srinivasa Rao K., Srilatha C. (2017). Synthesis and characterisation of neem leaf extract, 2,3-dehydrosalanol and quercetin dihydrate mediated silver nanoparticles for therapeutic applications. IET Nanobiotechnol., 11: 383–389. Search in Google Scholar

Baholet D., Skalickova S., Batik A., Malyugina S., Skladanka J., Horky P. (2022). Importance of zinc nanoparticles for the intestinal microbiome of weaned piglets. Front. Vet. Sci., 9: 852085. Search in Google Scholar

Bashir S.M., Ahmed Rather G., Patrício A., Haq Z., Sheikh A.A., Shah M.Z.U.H., Singh H., Khan A.A., Imtiyaz S., Ahmad S.B., Nabi S., Rakhshan R., Hassan S., Fonte P. (2022). Chitosan nanoparticles: a versatile platform for biomedical applications. Materials, 15: 6521. Search in Google Scholar

Broza Y.Y., Zhou X., Yuan M., Qu D., Zheng Y., Vishinkin R., Khatib M., Wu W., Haick H. (2019). Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev., 119: 11761–11817. Search in Google Scholar

Bruckmann F.D.S., Nunes F.B., Salles T.D.R., Franco C., Cadoná F.C., Bohn Rhoden C.R. (2022). Biological applications of silica-based nanoparticles. Magnetochemistry, 8: 131. Search in Google Scholar

Carvalho S.G., Silvestre A.L.P., Martins Dos Santos A., Fonseca-Santos B., Rodrigues W.D., Palmira Daflon Gremião M., Chorilli M., Villanova J.C.O. (2021). Polymeric-based drug delivery systems for veterinary use: state of the art. Int. J. Pharm., 604: 120756. Search in Google Scholar

Chaudhary S.A., Patel D.M., Patel J.K., Patel D.H. (2021). Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing, pp. 287–300. Springer. Search in Google Scholar

Chen S., Miao Q., Liu Y., Xiao Q., Lin Y., Yang Y., Guo F. (2023). Construction and functional evaluation of oral long-acting insulin hydrogel microparticles based on physical and chemical double crosslinking. Int. J. Biol. Macromol., 253: 126915. Search in Google Scholar

Cheng X., Tsao C., Sylvia V.L., Cornet D., Nicolella D.P., Bredbenner T.L., Christy R.J. (2014). Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomater., 10: 1360–1369. Search in Google Scholar

Chettupalli A.K., Srivani A., Sarvani P., Unnisa A. (2024). Nanoparticles and their prospective solicitations in veterinary medicine. In Sustainable Agriculture Reviews: Animal Biotechnology for Livestock Production 4, pp. 229–262. Springer. Search in Google Scholar

Danchuk O., Levchenko A., da Silva Mesquita R., Danchuk V., Cengiz S., Cengiz M., Grafov A. (2023). Meeting contemporary challenges: development of nanomaterials for veterinary medicine. Pharmaceutics, 15: 2326. Search in Google Scholar

Das K., Madhusoodan A.P., Mili B., Kumar A., Saxena A.C., Kumar K., Sarkar M., Singh P., Srivastava S., Bag S. (2017b). Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int. J. Nanomed., 12: 3235–3252. Search in Google Scholar

Das K., Mili B., Madhusoodan A.P., Saxena A.C., Kumar A., Singh P., Verma M.R., Sarkar M., Bag S. (2017a). Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue Cell, 49: 270–274. Search in Google Scholar

Dey S., Majumdar S., Hasnain M.S., Nayak A.K. (2022). Cross-linking of chitosan in drug delivery. In Chitosan in Drug Delivery, pp. 277–299. Academic Press. Search in Google Scholar

Dong Y., Wu X., Chen X., Zhou P., Xu F., Liang W. (2021). Nanotechnology shaping stem cell therapy: recent advances, application, challenges, and future outlook. Biomed. Pharmacother., 137: 111236. Search in Google Scholar

Dykman L.A. (2020). Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines, 19: 465–477. Search in Google Scholar

Ebenebe C.I., Iheukwumere E.I., Ezenyilimba B.N., Oyisi M., Ekugba C.U., Nwankwo C.A., Ikeogu C.F. (2024). Nanotechnology in livestock production: a review. e-Proc. Fac. Agric. Int. Conf., pp. 262–266. Search in Google Scholar

Falsafi S.R., Rostamabadi H., Assadpour E., Jafari S.M. (2020). Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci., 280: 102166. Search in Google Scholar

Filipczak N., Yalamarty S.S.K., Li X., Parveen F., Torchilin V. (2021). Developments in treatment methodologies using dendrimers for infectious diseases. Molecules, 26: 3304. Search in Google Scholar

Folliero V., Zannella C., Chianese A., Stelitano D., Ambrosino A., De Filippis A., Galdiero M., Franci G., Galdiero M. (2021). Application of dendrimers for treating parasitic diseases. Pharmaceutics, 13: 343. Search in Google Scholar

Gamedze N.P., Mthiyane D.M.N., Kgaswane K.S., Mavengahama S., Onwudiwe D.C. (2024). Growth, physiological responses, and meat quality of feedlot-finished Bonsmara steers offered unprocessed Mucuna pruriens utilis seed meal with or without conventional and green zinc oxide nanoparticles. Trop. Anim. Health Prod., 56: 1–13. Search in Google Scholar

Gelaye Y. (2024). Application of nanotechnology in animal nutrition: bibliographic review. Cogent Food Agric., 10: 2290308. Search in Google Scholar

Ghasemi M.A.G., Hamishehkar H., Javadi A., Homayouni-Rad A., Jafarizadeh-Malmiri H. (2024). Natural-based edible nanocomposite coating for beef meat packaging. Food Chem., 435: 137582. Search in Google Scholar

Hanafy M.H. (2018). Myconanotechnology in veterinary sector: status quo and future perspectives. Int. J. Vet. Sci. Med., 6: 270–273. Search in Google Scholar

Harish V., Tewari D., Gaur M., Yadav A.B., Swaroop S., Bechelany M., Barhoum A. (2022). Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 12: 457. Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A. (2021). Nanotechnology and reproductive management of farm animals: challenges and advances. Animals, 11: 1932. Search in Google Scholar

Hassan A.A., Mansour M.K., El Hamaky A.M., El Ahl R.M.S., Oraby N.H. (2020). Nanomaterials and nanocomposite applications in veterinary medicine. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, pp. 583–638. Elsevier. Search in Google Scholar

Hernández Á.P., Iglesias-Anciones L., Vaquero-González J.J., Piñol R., Criado J.J., Rodriguez E., Juanes-Velasco P., García-Vaquero M.L., Arias-Hidalgo C., Orfao A., Millán Á. (2023). Enhancement of tumor cell immunogenicity and antitumor properties derived from platinum-conjugated iron nanoparticles. Cancers, 15: 3204. Search in Google Scholar

Hozyen H.F., Ibrahim E.S., Khairy E.A., El-Dek S.I. (2019). Enhanced antibacterial activity of capped zinc oxide nanoparticles: a step towards the control of clinical bovine mastitis. Vet. World, 12: 1225. Search in Google Scholar

Ingrole R.S.J., Tao W., Joshi G., Gill H.S. (2021). M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine, 39: 4800–4809. Search in Google Scholar

Iqbal M., Niazi M.B.K., Jahan Z., Ahmad T., Hussain Z., Sher F. (2022). Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym. Bull., 79: 5019–5040. Search in Google Scholar

Jain A.K., Thareja S. (2019). In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 47: 524–539. Search in Google Scholar

Kabiri M., Bolourian H., Dehghan S., Tafaghodi M. (2021). The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. Iran. J. Basic Med. Sci., 24: 116–122. Search in Google Scholar

Kalaiselvan E., Maiti S.K., Shivaramu S., Banu S.A., Sharun K., Mohan D., Palakkara S., Bag S., Sahoo M., Ramalingam S., Hescheler J. (2024). Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater., 15: 66. Search in Google Scholar

Kalinska A., Jaworski S., Wierzbicki M., Gołębiewski M. (2019). Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention? Int. J. Mol. Sci., 20: 1672. Search in Google Scholar

Khan K.U., Minhas M.U., Badshah S.F., Suhail M., Ahmad A., Ijaz S. (2022). Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci., 291: 120301. Search in Google Scholar

Khazaei M., Hosseini M.S., Haghighi A.M., Misaghi M. (2023). Nanosensors and their applications in early diagnosis of cancer. Sens. Bio-Sens. Res., 39: 100569. Search in Google Scholar

Kim Y.S., Son A., Kim J., Kwon S.B., Kim M.H., Kim P., Yu J.E. (2018). Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front. Immunol., 9: 1093. Search in Google Scholar

Kisakova L.A., Apartsin E.K., Nizolenko L.F., Karpenko L.I. (2023). Dendrimer-mediated delivery of DNA and RNA vaccines. Pharmaceutics, 15: 1106. Search in Google Scholar

Klontzas M.E., Kakkos G.A., Papadakis G.Z., Marias K., Karantanas A.H. (2021). Advanced clinical imaging for the evaluation of stem cell-based therapies. Expert Opin. Biol. Ther., 21: 1253–1264. Search in Google Scholar

Krishnan S., Thirunavukarasu A., Jha N.K., Gahtori R., Roy A.S., Dholpuria S., Kesari K.K., Singh S.K., Dua K., Gupta P.K. (2021). Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update. J. Nanopart. Res., 23: 1–16. Search in Google Scholar

Kumar R., Chowdhury A., Mamatha D., Rose M.K., Ghosh M. (2024). Nanotechnology in protozoan livestock disease diagnosis. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 177–194. Springer. Search in Google Scholar

Kuru C.İ., Ulucan-Karnak F., Dayıoğlu B., Şahinler M., Şendemir A., Akgöl S. (2024). Affinity-based magnetic nanoparticle development for cancer stem cell isolation. Polymers, 16: 196. Search in Google Scholar

Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M., et al. (2021). Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals, 11: 1884. Search in Google Scholar

Lee L.C., Gadegaard N., De Andrés M.C., Turner L.A., Burgess K.V., Yarwood S.J., Wells J., Salmeron-Sanchez M., Meek D., Oreffo R.O., Dalby M.J. (2017). Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials, 116: 10–20. Search in Google Scholar

Li D., Fu D., Kang H., Rong G., Jin Z., Wang X., Zhao K. (2017). Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr. Drug Deliv., 14: 27–35. Search in Google Scholar

Liao J., Peng H., Liu C., Li D., Yin Y., Lu B., Zheng H., Wang Q. (2021). Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Mater. Sci. Eng. C, 118: 111527. Search in Google Scholar

Lin L.C.W., Huang C.Y., Yao B.Y., Lin J.C., Agrawal A., Algaissi A., Chang Y.C. (2019). Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Adv. Funct. Mater., 29: 1807616. Search in Google Scholar

Liu D., Hong Y., Li Y., Hu C., Yip T.C., Yu W.K., Zhu Y., Fong C.C., Wang W., Au S.K., Wang S., Yang M. (2020). Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 10: 1181–1196. Search in Google Scholar

Liu H., Tang W., Li C., Lv P., Wang Z., Liu Y., Zhang C., Bao Y., Chen H., Meng X., Song Y. (2015). CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Res. Lett., 10: 265. Search in Google Scholar

Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127. Search in Google Scholar

Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127. Search in Google Scholar

Ma X., Luan Z., Li J. (2023). Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int. J. Nanomed., pp. 143–182. Search in Google Scholar

Madhusoodan A.P., Das K., Mili B., Kumar K., Kumar A., Saxena A.C., Singh P., Dutt T., Bag S. (2019). In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. Biotechnol. Rep., 24: e00387. Search in Google Scholar

Malik S., Muhammad K., Waheed Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28: 6624. Search in Google Scholar

Malyugina S., Skalickova S., Skladanka J., Slama P., Horky P. (2021). Biogenic selenium nanoparticles in animal nutrition: a review. Agriculture, 11: 1244. Search in Google Scholar

Manessis G., Gelasakis A.I., Bossis I. (2022). Point-of-care diagnostics for farm animal diseases: from biosensors to integrated lab-on-chip devices. Biosensors, 12: 455. Search in Google Scholar

Mansour H., Aboamer A.A., Agamy R., Ali S.M., Mohamed M.Y., Abd El-Aziz M.E., et al. (2025). Effect of zinc oxide and selenium nanoparticles on milk production efficiency and related gene expression in Egyptian Baladi goats. Egypt. J. Chem., 68: 445–454. Search in Google Scholar

Mehanna M.M., Mneimneh A.T. (2021). Formulation and applications of lipid-based nanovehicles: spotlight on self-emulsifying systems. Adv. Pharm. Bull., 11: 56. Search in Google Scholar

Mili B., Das K., Kumar A., Saxena A.C., Singh P., Ghosh S., Bag S. (2018). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J. Mater. Sci. Mater. Med., 29: 1–13. Search in Google Scholar

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 20: 101–124. Search in Google Scholar

Mondal T., Das K., Singh P., Natarajan M., Manna B., Ghosh A., Singh P., Saha S.K., Dhama K., Dutt T., Bag S. (2022). Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells. Nanomedicine, 40: 102487. Search in Google Scholar

Moniruzzaman M., Kim D., Kim H., Kim N., Chin S., Karthikeyan A., et al. (2023). Evaluation of dietary curcumin nanospheres as phytobiotics on growth performance, serum biochemistry, nutritional composition, meat quality, gastrointestinal health, and fecal condition of finishing pigs. Front. Vet. Sci., 10: 1127309. Search in Google Scholar

Mukherjee S., Togla O., Mukherjee A. (2022). Nanotechnology in animal breeding and reproduction. Recent Adv. Appl. Nanotechnol. Livest. Prod. Manag., pp. 142-174. The Agriculture Publication, Jaipur. Search in Google Scholar

Najafi A., Daghigh-Kia H., Mehdipour M., Mohammadi H., Hamishehkar H. (2022). Comparing the effect of rooster semen extender supplemented with gamma-oryzanol and its nano form on post-thaw sperm quality and fertility. Poult. Sci., 101: 101637. Search in Google Scholar

Natarajan M., Singh P., Mondal T., Kumar K., Das K., Dutt T., Bag S. (2021). In vitro propagation and cardiac differentiation of canine induced pluripotent stem cells on carbon nanotube substrates. Tissue Cell, 71: 101571. Search in Google Scholar

Neculai-Valeanu A.S., Ariton A.M., Mădescu B.M., Rîmbu C.M., Creangă Ş. (2021). Nanomaterials and essential oils as candidates for developing novel treatment options for bovine mastitis. Animals, 11: 1625. Search in Google Scholar

Nidhi, Kumar S., Yadav N., Kumar R., Mohan H. (2024). Nanosensors in veterinary disease detection. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 241–256. Springer. Search in Google Scholar

Noah N.M., Ndangili P.M. (2022). Nanosensor arrays: innovative approaches for medical diagnosis. In Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, pp. 350–386. CRC Press. Search in Google Scholar

Osorio H.M., Castillo-Solís F., Barragán S.Y., Rodríguez-Pólit C., Gonzalez-Pastor R. (2024). Graphene quantum dots from natural carbon sources for drug and gene delivery in cancer treatment. Int. J. Mol. Sci., 25: 10539. Search in Google Scholar

Pandey V., Haider T., Agrawal P., Soni S., Soni V. (2022). Advances in natural polymeric nanoparticles for the drug delivery. In Advanced Drug Delivery Systems. IntechOpen: London, UK. Search in Google Scholar

Pati R., Shevtsov M., Sonawane A. (2018). Nanoparticle vaccines against infectious diseases. Front. Immunol., 9: 2224. Search in Google Scholar

Prasad R.D., Sahoo A.K., Shrivastav O.P., Charmode N., Kamat R., Kajave N.G., Chauhan J., Banga S., Tamboli U., MS P., Atigre R.H. (2022). A review on aspects of nanotechnology in food science and animal nutrition. ES Food Agrofor., 8: 12–46. Search in Google Scholar

Prządka P., Buczak K., Frejlich E., Gąsior L., Suliga K., Kiełbowicz Z. (2021). The role of mesenchymal stem cells (MSCs) in veterinary medicine and their use in musculoskeletal disorders. Biomolecules, 11: 1141. Search in Google Scholar

Przybyszewska A., Barbosa C.H., Pires F., Pires J.R.A., Rodrigues C., Galus S., et al. (2023). Packaging of fresh poultry meat with innovative and sustainable ZnO/pectin bionanocomposite films—a contribution to the bio and circular economy. Coatings, 13: 1208. Search in Google Scholar

Rahman H.S., Othman H.H., Abdullah R., Edin H.Y.A.S., Al-Haj N.A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci., 8: 1769–1779. Search in Google Scholar

Reddy P.R.K., Yasaswini D., Reddy P.P.R., Kumar D.S., Elghandour M.M., Salem A.Z.M. (2023). Nanotechnology in veterinary sector: current applications, limitations and future perspective. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications, pp. 1541–1567. Springer. Search in Google Scholar

Reddy P.R.K., Yasaswini D., Reddy P.P.R., Zeineldin M., Adegbeye M.J., Hyder I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Vet. World, 13: 1685–1696. Search in Google Scholar

Remião M.H., Segatto N.V., Pohlmann A., Guterres S.S., Seixas F.K., Collares T. (2018). The potential of nanotechnology in medically assisted reproduction. Front. Pharmacol., 11: 994. Search in Google Scholar

Ricles L.M., Nam S.Y., Trevino E.A., Emelianov S.Y., Suggs L.J. (2014). A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B, 2: 8220–8230. Search in Google Scholar

Rios T.B., Maximiano M.R., Feitosa G.C., Malmsten M., Franco O.L. (2024). Nanosensors for animal infectious disease detection. Sens. Bio-Sens. Res., 43: 100622. Search in Google Scholar

Saadeldin I.M., Khalil W.A., Alharbi M.G., Lee S.H. (2020). The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals, 10: 2281. Search in Google Scholar

Santos-Jimenez Z., Guillen-Gargallo S., Encinas T., Berlinguer F., Veliz-Deras F.G., Martinez-Ros P., Gonzalez-Bulnes A. (2020). Use of propylene-glycol as a cosolvent for GnRH in synchronization of estrus and ovulation in sheep. Animals, 10: 897. Search in Google Scholar

Sawutdeechaikul P., Cia F., Bancroft G.J., Wanichwecharungruang S., Sittplangkoo C., Palaga T. (2019). Oxidized carbon nanosphere-based subunit vaccine delivery system elicited robust Th1 and cytotoxic T cell responses. J. Microbiol. Biotechnol., 29: 489–499. Search in Google Scholar

Sekimukai H., Iwata-Yoshikawa N., Fukushi S., Tani H., Kataoka M., Suzuki T., Nagata N. (2020). Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol., 64: 33–51. Search in Google Scholar

Semeano A.T., Tofoli F.A., Corrêa-Velloso J.C., de Jesus Santos A.P., Oliveira-Giacomelli Á., Cardoso R.R., Pessoa M.A., da Rocha E.L., Ribeiro G., Ferrari M.F.R., Pereira L.V., Teng Y.D., Petri D.F.S., Ulrich H. (2022). Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev. Rep., 18: 1337–1354. Search in Google Scholar

Shafi B.U.D., Kumar R., Jadhav S.E., Kar J. (2020). Effect of zinc nanoparticles on milk yield, milk composition and somatic cell count in early-lactating Barbari does. Biol. Trace Elem. Res., 196: 96–102. Search in Google Scholar

Shahin M.A., Khalil W.A., Saadeldin I.M., Swelum A.A., El-Harairy M.A. (2020). Comparison between the effects of adding vitamins, trace elements, and nanoparticles to SHOTOR extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals, 10: 78. Search in Google Scholar

Shen W.B., Plachez C., Tsymbalyuk O., Tsymbalyuk N., Xu S., Smith A.M., Michel S.L., Yarnell D., Mullins R., Gullapalli R.P., Puche A. (2016). Cell-based therapy in TBI: magnetic retention of neural stem cells in vivo. Cell Transplant., 25: 1085–1099. Search in Google Scholar

Siddharth S. (2022). Stem cell biology: an overview. In Biotechnological Advances for Microbiology, Molecular Biology, and Nanotechnology, pp. 297–310. Search in Google Scholar

Sreekanth K., Sharath K.P., Midhun Dominic C.D., Radhakrishnan E.K. (2024). Microbial load reduction in stored raw beef meat using chitosan/starch-based active packaging films incorporated with cellulose nanofibers and cinnamon essential oil. Meat Sci., 216: 109552. Search in Google Scholar

Sun X., Gamal M., Nold P., Said A., Chakraborty I., Pelaz B., et al. (2019). Tracking stem cells and macrophages with gold and iron oxide nanoparticles: the choice of the best suited particles. Appl. Mater. Today, 15: 267–279. Search in Google Scholar

Teng Z., Sun S., Luo X., Zhang Z., Seo H., Xu X., Huang J., Dong H., Mu S., Du P., Zhang Z., Guo H. (2021). Bi-functional gold nanocages enhance specific immunological responses of foot-and-mouth disease virus-like particles vaccine as a carrier and adjuvant. Nanomedicine, 33: 102358. Search in Google Scholar

Tewari A., Jain B., Brar B., Prasad G., Prasad M. (2021). Biosensors: modern tools for disease diagnosis and animal health monitoring. In Biosensors in Agriculture: Recent Trends and Future Perspectives, pp. 387–414. Search in Google Scholar

Thwala L.N., Ndlovu S.C., Mpofu K.T., Lugongolo M.Y., Mthunzi-Kufa P. (2023). Nanotechnology-based diagnostics for diseases prevalent in developing countries: current advances in point-of-care tests. Nanomaterials, 13: 1247. Search in Google Scholar

TS A., Shalumon K.T., Chen J.P. (2019). Applications of magnetic liposomes in cancer therapies. Curr. Pharm. Des., 25: 1490–1504. Search in Google Scholar

Usman K.A.S., Maina J.W., Seyedin S., Conato M.T., Payawan L.M. Jr, Dumée L.F., Razal J.M. (2020). Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Mater., 12: 58. Search in Google Scholar

Veclin C., Desmet C., Pradel A., Valsesia A., Ponti J., El Hadri H., Maupas T., Pellerin V., Gigault J., Grassl B., Reynaud S. (2022). Effect of the surface hydrophobicity–morphology– functionality of nanoplastics on their homoaggregation in seawater. ACS ES&T Water, 2: 88–95. Search in Google Scholar

Vo-Van Q.B., Duong T.H., Le T.K.A. (2023). Biosynthesis of silver nanoparticles using curcumin against the bovine mastitis bacteria. J. Cent. Eur. Agric., 24: 505–512. Search in Google Scholar

Walewska M., Małek A., Taciak B., Wojtalewicz A., Wilk S., Wojtkowska A., Zabielska-Koczywąs K., Lechowski R. (2023). PEG-liposomal doxorubicin as a potential agent for canine metastatic osteosarcoma—in vitro and ex ovo studies. J. Vet. Res., 67: 297. Search in Google Scholar

Wang K., Lu X., Lu Y., Wang J., Lu Q., Cao X., Yang Y., Yang Z. (2022). Nanomaterials in animal husbandry: research and prospects. Front. Genet., 13: 915911. Search in Google Scholar

Wang M., Yang X., Zhang P., Cai L., Yang X., Chen Y., Jing Y., Kong J., Yang X., Sun F.L. (2016). Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv. Sci., 3: 1500393. Search in Google Scholar

Wang X., Bai R. (2023). Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv., 30: 2256495. Search in Google Scholar

Weeratunga P., Harman R.M., Van de Walle G.R. (2023). Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front. Vet. Sci., 10: 1129287. Search in Google Scholar

Williams A., Bennison J.J., Mackenzie A.M., Sinclair L.A. (2024). Feeding nanoparticles of copper oxide coated with lysine with or without added antagonists affects the copper status but not the performance of Holstein dairy cows. J. Dairy Sci., 107: 9277–9288. Search in Google Scholar

Wu L., Wang C., Li Y. (2022). Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine, 17: 1567–1583. Search in Google Scholar

Xie S., Ying Z., Xiu Z., Sun Y., Yang Q., Gao H., Wu Y. (2024). Zinc oxide nanoparticles improve lactation and metabolism in dairy goats by modulating the rumen microbiota. Front. Microbiol., 15: 1483680. Search in Google Scholar

Yang Y., Xing R., Liu S., Qin Y., Li K., Yu H., Li P. (2020). Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr. Polym., 229: 115423. Search in Google Scholar

Ying Z., Xie S., Xiu Z., Sun Y., Yang Q., Gao H., Fan W., Wu Y. (2025). Under heat stress conditions, selenium nanoparticles promote lactation through modulation of rumen microbiota and metabolic processes in dairy goats. Sci. Rep., 15: 9063. Search in Google Scholar

Younis S., Zia R., Tahir N., Bukhari S.Z., Khan W.S., Bajwa S.Z. (2022). Nanosensors for animal health monitoring. In Nanosensors for Smart Agriculture, pp. 509–529. Elsevier. Search in Google Scholar

Yuan Y.G., Peng Q.L., Gurunathan S. (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 18: 569. Search in Google Scholar

Zhao C., Song X., Jin W., Wu F., Zhang Q., Zhang M., Shen J. (2019). Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta, 1056: 108–116. Search in Google Scholar

Zorkina Y., Abramova O., Ushakova V., Morozova A., Zubkov E., Valikhov M., Melnikov P., Majouga A., Chekhonin V. (2020). Nanocarrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules, 25: 5294. Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine