[
Abdelkader H., Hussain S.A., Abdullah N., Kmaruddin S. (2018). Review on micro-encapsulation with chitosan for pharmaceuticals applications. MOJ Curr. Res. Rev., 1: 77–84.
]Search in Google Scholar
[
Abedin S.N., Baruah A., Baruah K.K., Kadirvel G., Katiyar R., Khargharia G., Bora A., Dutta D.J., Sinha S., Tamuly S., Phookan A., Deori S. (2023). In Vitro and In Vivo Studies on the Efficacy of Zinc-Oxide and Selenium Nanoparticle in Cryopreserved Goat (Capra hircus) Spermatozoa. Biol. Trace Elem. Res., 201: 4726–4745.
]Search in Google Scholar
[
Ahmad S.U., Li B., Sun J., Arbab S., Dong Z., Cheng F., Zhou X., Mahfuz S., Zhang J. (2021). Recent advances in microencapsulation of drugs for veterinary applications. J. Vet. Pharmacol. Ther., 44: 298–312.
]Search in Google Scholar
[
Ahmed T.A., Aljaeid B.M. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 10: 483–507.
]Search in Google Scholar
[
Albuquerque J., Casal S., Páscoa R.N.M.J., Van Dorpe I., Fonseca A.J.M., Cabrita A.R.J., Neves A.R., Reis S. (2020). Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Sci. Rep., 10: 6830.
]Search in Google Scholar
[
Alipio M., Villena M.L. (2023). Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health, 27: 100369.
]Search in Google Scholar
[
Almeida C.F., Faria M., Carvalho J., Pinho E. (2024). Contribution of nanotechnology to greater efficiency in animal nutrition and production. J. Anim. Physiol. Anim. Nutr., 108: 1430–1452.
]Search in Google Scholar
[
Al-Nemrawi N.K., Darweesh R.S., Al-Shriem L.A., Al-Qawasmi F.S., Emran S.O., Khafajah A.S., Abu-Dalo M.A. (2022). Polymeric nanoparticles for inhaled vaccines. Polymers, 14: 4450.
]Search in Google Scholar
[
Ambrosio N., Voci S., Gagliardi A., Palma E., Fresta M., Cosco D. (2022). Application of biocompatible drug delivery nanosystems for the treatment of naturally occurring cancer in dogs. J. Funct. Biomater., 13: 116.
]Search in Google Scholar
[
Arshad R., Gulshad L., Haq I.U., Farooq M.A., Al-Farga A., Siddique R., Manzoor M.F., Karrar E. (2021). Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr., 9: 3354–3361.
]Search in Google Scholar
[
Ashizawa K. (2019). Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi, 139: 237.
]Search in Google Scholar
[
Attia M.A., Essa E.A., Elebyary T.T., Faheem A.M., Elkordy A.A. (2021). Brief on recent application of liposomal vaccines for lower respiratory tract viral infections: from influenza to COVID-19 vaccines. Pharmaceuticals, 14: 1173.
]Search in Google Scholar
[
Attia M.S., El Nasharty M.A., Rabee M.M., Mohammed N.N., Mohamed M.M., Hosny S.I., Abd El-Wahab A.G., Mahmoud A.G., Abd Elmaged E.M., Afify H.G., Abdel-Mottaleb M.S.A. (2024). Ionotropically cross-linked polymeric nanoparticles for drug delivery. In Ionotropic Cross-Linking of Biopolymers, pp. 301–353. Elsevier.
]Search in Google Scholar
[
Avinash B., Venu R., Prasad T.N., Alpha Raj M., Srinivasa Rao K., Srilatha C. (2017). Synthesis and characterisation of neem leaf extract, 2,3-dehydrosalanol and quercetin dihydrate mediated silver nanoparticles for therapeutic applications. IET Nanobiotechnol., 11: 383–389.
]Search in Google Scholar
[
Baholet D., Skalickova S., Batik A., Malyugina S., Skladanka J., Horky P. (2022). Importance of zinc nanoparticles for the intestinal microbiome of weaned piglets. Front. Vet. Sci., 9: 852085.
]Search in Google Scholar
[
Bashir S.M., Ahmed Rather G., Patrício A., Haq Z., Sheikh A.A., Shah M.Z.U.H., Singh H., Khan A.A., Imtiyaz S., Ahmad S.B., Nabi S., Rakhshan R., Hassan S., Fonte P. (2022). Chitosan nanoparticles: a versatile platform for biomedical applications. Materials, 15: 6521.
]Search in Google Scholar
[
Broza Y.Y., Zhou X., Yuan M., Qu D., Zheng Y., Vishinkin R., Khatib M., Wu W., Haick H. (2019). Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev., 119: 11761–11817.
]Search in Google Scholar
[
Bruckmann F.D.S., Nunes F.B., Salles T.D.R., Franco C., Cadoná F.C., Bohn Rhoden C.R. (2022). Biological applications of silica-based nanoparticles. Magnetochemistry, 8: 131.
]Search in Google Scholar
[
Carvalho S.G., Silvestre A.L.P., Martins Dos Santos A., Fonseca-Santos B., Rodrigues W.D., Palmira Daflon Gremião M., Chorilli M., Villanova J.C.O. (2021). Polymeric-based drug delivery systems for veterinary use: state of the art. Int. J. Pharm., 604: 120756.
]Search in Google Scholar
[
Chaudhary S.A., Patel D.M., Patel J.K., Patel D.H. (2021). Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing, pp. 287–300. Springer.
]Search in Google Scholar
[
Chen S., Miao Q., Liu Y., Xiao Q., Lin Y., Yang Y., Guo F. (2023). Construction and functional evaluation of oral long-acting insulin hydrogel microparticles based on physical and chemical double crosslinking. Int. J. Biol. Macromol., 253: 126915.
]Search in Google Scholar
[
Cheng X., Tsao C., Sylvia V.L., Cornet D., Nicolella D.P., Bredbenner T.L., Christy R.J. (2014). Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomater., 10: 1360–1369.
]Search in Google Scholar
[
Chettupalli A.K., Srivani A., Sarvani P., Unnisa A. (2024). Nanoparticles and their prospective solicitations in veterinary medicine. In Sustainable Agriculture Reviews: Animal Biotechnology for Livestock Production 4, pp. 229–262. Springer.
]Search in Google Scholar
[
Danchuk O., Levchenko A., da Silva Mesquita R., Danchuk V., Cengiz S., Cengiz M., Grafov A. (2023). Meeting contemporary challenges: development of nanomaterials for veterinary medicine. Pharmaceutics, 15: 2326.
]Search in Google Scholar
[
Das K., Madhusoodan A.P., Mili B., Kumar A., Saxena A.C., Kumar K., Sarkar M., Singh P., Srivastava S., Bag S. (2017b). Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int. J. Nanomed., 12: 3235–3252.
]Search in Google Scholar
[
Das K., Mili B., Madhusoodan A.P., Saxena A.C., Kumar A., Singh P., Verma M.R., Sarkar M., Bag S. (2017a). Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue Cell, 49: 270–274.
]Search in Google Scholar
[
Dey S., Majumdar S., Hasnain M.S., Nayak A.K. (2022). Cross-linking of chitosan in drug delivery. In Chitosan in Drug Delivery, pp. 277–299. Academic Press.
]Search in Google Scholar
[
Dong Y., Wu X., Chen X., Zhou P., Xu F., Liang W. (2021). Nanotechnology shaping stem cell therapy: recent advances, application, challenges, and future outlook. Biomed. Pharmacother., 137: 111236.
]Search in Google Scholar
[
Dykman L.A. (2020). Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines, 19: 465–477.
]Search in Google Scholar
[
Ebenebe C.I., Iheukwumere E.I., Ezenyilimba B.N., Oyisi M., Ekugba C.U., Nwankwo C.A., Ikeogu C.F. (2024). Nanotechnology in livestock production: a review. e-Proc. Fac. Agric. Int. Conf., pp. 262–266.
]Search in Google Scholar
[
Falsafi S.R., Rostamabadi H., Assadpour E., Jafari S.M. (2020). Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci., 280: 102166.
]Search in Google Scholar
[
Filipczak N., Yalamarty S.S.K., Li X., Parveen F., Torchilin V. (2021). Developments in treatment methodologies using dendrimers for infectious diseases. Molecules, 26: 3304.
]Search in Google Scholar
[
Folliero V., Zannella C., Chianese A., Stelitano D., Ambrosino A., De Filippis A., Galdiero M., Franci G., Galdiero M. (2021). Application of dendrimers for treating parasitic diseases. Pharmaceutics, 13: 343.
]Search in Google Scholar
[
Gamedze N.P., Mthiyane D.M.N., Kgaswane K.S., Mavengahama S., Onwudiwe D.C. (2024). Growth, physiological responses, and meat quality of feedlot-finished Bonsmara steers offered unprocessed Mucuna pruriens utilis seed meal with or without conventional and green zinc oxide nanoparticles. Trop. Anim. Health Prod., 56: 1–13.
]Search in Google Scholar
[
Gelaye Y. (2024). Application of nanotechnology in animal nutrition: bibliographic review. Cogent Food Agric., 10: 2290308.
]Search in Google Scholar
[
Ghasemi M.A.G., Hamishehkar H., Javadi A., Homayouni-Rad A., Jafarizadeh-Malmiri H. (2024). Natural-based edible nanocomposite coating for beef meat packaging. Food Chem., 435: 137582.
]Search in Google Scholar
[
Hanafy M.H. (2018). Myconanotechnology in veterinary sector: status quo and future perspectives. Int. J. Vet. Sci. Med., 6: 270–273.
]Search in Google Scholar
[
Harish V., Tewari D., Gaur M., Yadav A.B., Swaroop S., Bechelany M., Barhoum A. (2022). Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 12: 457.
]Search in Google Scholar
[
Hashem N.M., Gonzalez-Bulnes A. (2021). Nanotechnology and reproductive management of farm animals: challenges and advances. Animals, 11: 1932.
]Search in Google Scholar
[
Hassan A.A., Mansour M.K., El Hamaky A.M., El Ahl R.M.S., Oraby N.H. (2020). Nanomaterials and nanocomposite applications in veterinary medicine. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, pp. 583–638. Elsevier.
]Search in Google Scholar
[
Hernández Á.P., Iglesias-Anciones L., Vaquero-González J.J., Piñol R., Criado J.J., Rodriguez E., Juanes-Velasco P., García-Vaquero M.L., Arias-Hidalgo C., Orfao A., Millán Á. (2023). Enhancement of tumor cell immunogenicity and antitumor properties derived from platinum-conjugated iron nanoparticles. Cancers, 15: 3204.
]Search in Google Scholar
[
Hozyen H.F., Ibrahim E.S., Khairy E.A., El-Dek S.I. (2019). Enhanced antibacterial activity of capped zinc oxide nanoparticles: a step towards the control of clinical bovine mastitis. Vet. World, 12: 1225.
]Search in Google Scholar
[
Ingrole R.S.J., Tao W., Joshi G., Gill H.S. (2021). M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine, 39: 4800–4809.
]Search in Google Scholar
[
Iqbal M., Niazi M.B.K., Jahan Z., Ahmad T., Hussain Z., Sher F. (2022). Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym. Bull., 79: 5019–5040.
]Search in Google Scholar
[
Jain A.K., Thareja S. (2019). In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 47: 524–539.
]Search in Google Scholar
[
Kabiri M., Bolourian H., Dehghan S., Tafaghodi M. (2021). The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. Iran. J. Basic Med. Sci., 24: 116–122.
]Search in Google Scholar
[
Kalaiselvan E., Maiti S.K., Shivaramu S., Banu S.A., Sharun K., Mohan D., Palakkara S., Bag S., Sahoo M., Ramalingam S., Hescheler J. (2024). Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater., 15: 66.
]Search in Google Scholar
[
Kalinska A., Jaworski S., Wierzbicki M., Gołębiewski M. (2019). Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention? Int. J. Mol. Sci., 20: 1672.
]Search in Google Scholar
[
Khan K.U., Minhas M.U., Badshah S.F., Suhail M., Ahmad A., Ijaz S. (2022). Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci., 291: 120301.
]Search in Google Scholar
[
Khazaei M., Hosseini M.S., Haghighi A.M., Misaghi M. (2023). Nanosensors and their applications in early diagnosis of cancer. Sens. Bio-Sens. Res., 39: 100569.
]Search in Google Scholar
[
Kim Y.S., Son A., Kim J., Kwon S.B., Kim M.H., Kim P., Yu J.E. (2018). Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front. Immunol., 9: 1093.
]Search in Google Scholar
[
Kisakova L.A., Apartsin E.K., Nizolenko L.F., Karpenko L.I. (2023). Dendrimer-mediated delivery of DNA and RNA vaccines. Pharmaceutics, 15: 1106.
]Search in Google Scholar
[
Klontzas M.E., Kakkos G.A., Papadakis G.Z., Marias K., Karantanas A.H. (2021). Advanced clinical imaging for the evaluation of stem cell-based therapies. Expert Opin. Biol. Ther., 21: 1253–1264.
]Search in Google Scholar
[
Krishnan S., Thirunavukarasu A., Jha N.K., Gahtori R., Roy A.S., Dholpuria S., Kesari K.K., Singh S.K., Dua K., Gupta P.K. (2021). Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update. J. Nanopart. Res., 23: 1–16.
]Search in Google Scholar
[
Kumar R., Chowdhury A., Mamatha D., Rose M.K., Ghosh M. (2024). Nanotechnology in protozoan livestock disease diagnosis. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 177–194. Springer.
]Search in Google Scholar
[
Kuru C.İ., Ulucan-Karnak F., Dayıoğlu B., Şahinler M., Şendemir A., Akgöl S. (2024). Affinity-based magnetic nanoparticle development for cancer stem cell isolation. Polymers, 16: 196.
]Search in Google Scholar
[
Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M., et al. (2021). Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals, 11: 1884.
]Search in Google Scholar
[
Lee L.C., Gadegaard N., De Andrés M.C., Turner L.A., Burgess K.V., Yarwood S.J., Wells J., Salmeron-Sanchez M., Meek D., Oreffo R.O., Dalby M.J. (2017). Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials, 116: 10–20.
]Search in Google Scholar
[
Li D., Fu D., Kang H., Rong G., Jin Z., Wang X., Zhao K. (2017). Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr. Drug Deliv., 14: 27–35.
]Search in Google Scholar
[
Liao J., Peng H., Liu C., Li D., Yin Y., Lu B., Zheng H., Wang Q. (2021). Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Mater. Sci. Eng. C, 118: 111527.
]Search in Google Scholar
[
Lin L.C.W., Huang C.Y., Yao B.Y., Lin J.C., Agrawal A., Algaissi A., Chang Y.C. (2019). Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Adv. Funct. Mater., 29: 1807616.
]Search in Google Scholar
[
Liu D., Hong Y., Li Y., Hu C., Yip T.C., Yu W.K., Zhu Y., Fong C.C., Wang W., Au S.K., Wang S., Yang M. (2020). Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 10: 1181–1196.
]Search in Google Scholar
[
Liu H., Tang W., Li C., Lv P., Wang Z., Liu Y., Zhang C., Bao Y., Chen H., Meng X., Song Y. (2015). CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Res. Lett., 10: 265.
]Search in Google Scholar
[
Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127.
]Search in Google Scholar
[
Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127.
]Search in Google Scholar
[
Ma X., Luan Z., Li J. (2023). Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int. J. Nanomed., pp. 143–182.
]Search in Google Scholar
[
Madhusoodan A.P., Das K., Mili B., Kumar K., Kumar A., Saxena A.C., Singh P., Dutt T., Bag S. (2019). In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. Biotechnol. Rep., 24: e00387.
]Search in Google Scholar
[
Malik S., Muhammad K., Waheed Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28: 6624.
]Search in Google Scholar
[
Malyugina S., Skalickova S., Skladanka J., Slama P., Horky P. (2021). Biogenic selenium nanoparticles in animal nutrition: a review. Agriculture, 11: 1244.
]Search in Google Scholar
[
Manessis G., Gelasakis A.I., Bossis I. (2022). Point-of-care diagnostics for farm animal diseases: from biosensors to integrated lab-on-chip devices. Biosensors, 12: 455.
]Search in Google Scholar
[
Mansour H., Aboamer A.A., Agamy R., Ali S.M., Mohamed M.Y., Abd El-Aziz M.E., et al. (2025). Effect of zinc oxide and selenium nanoparticles on milk production efficiency and related gene expression in Egyptian Baladi goats. Egypt. J. Chem., 68: 445–454.
]Search in Google Scholar
[
Mehanna M.M., Mneimneh A.T. (2021). Formulation and applications of lipid-based nanovehicles: spotlight on self-emulsifying systems. Adv. Pharm. Bull., 11: 56.
]Search in Google Scholar
[
Mili B., Das K., Kumar A., Saxena A.C., Singh P., Ghosh S., Bag S. (2018). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J. Mater. Sci. Mater. Med., 29: 1–13.
]Search in Google Scholar
[
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 20: 101–124.
]Search in Google Scholar
[
Mondal T., Das K., Singh P., Natarajan M., Manna B., Ghosh A., Singh P., Saha S.K., Dhama K., Dutt T., Bag S. (2022). Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells. Nanomedicine, 40: 102487.
]Search in Google Scholar
[
Moniruzzaman M., Kim D., Kim H., Kim N., Chin S., Karthikeyan A., et al. (2023). Evaluation of dietary curcumin nanospheres as phytobiotics on growth performance, serum biochemistry, nutritional composition, meat quality, gastrointestinal health, and fecal condition of finishing pigs. Front. Vet. Sci., 10: 1127309.
]Search in Google Scholar
[
Mukherjee S., Togla O., Mukherjee A. (2022). Nanotechnology in animal breeding and reproduction. Recent Adv. Appl. Nanotechnol. Livest. Prod. Manag., pp. 142-174. The Agriculture Publication, Jaipur.
]Search in Google Scholar
[
Najafi A., Daghigh-Kia H., Mehdipour M., Mohammadi H., Hamishehkar H. (2022). Comparing the effect of rooster semen extender supplemented with gamma-oryzanol and its nano form on post-thaw sperm quality and fertility. Poult. Sci., 101: 101637.
]Search in Google Scholar
[
Natarajan M., Singh P., Mondal T., Kumar K., Das K., Dutt T., Bag S. (2021). In vitro propagation and cardiac differentiation of canine induced pluripotent stem cells on carbon nanotube substrates. Tissue Cell, 71: 101571.
]Search in Google Scholar
[
Neculai-Valeanu A.S., Ariton A.M., Mădescu B.M., Rîmbu C.M., Creangă Ş. (2021). Nanomaterials and essential oils as candidates for developing novel treatment options for bovine mastitis. Animals, 11: 1625.
]Search in Google Scholar
[
Nidhi, Kumar S., Yadav N., Kumar R., Mohan H. (2024). Nanosensors in veterinary disease detection. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 241–256. Springer.
]Search in Google Scholar
[
Noah N.M., Ndangili P.M. (2022). Nanosensor arrays: innovative approaches for medical diagnosis. In Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, pp. 350–386. CRC Press.
]Search in Google Scholar
[
Osorio H.M., Castillo-Solís F., Barragán S.Y., Rodríguez-Pólit C., Gonzalez-Pastor R. (2024). Graphene quantum dots from natural carbon sources for drug and gene delivery in cancer treatment. Int. J. Mol. Sci., 25: 10539.
]Search in Google Scholar
[
Pandey V., Haider T., Agrawal P., Soni S., Soni V. (2022). Advances in natural polymeric nanoparticles for the drug delivery. In Advanced Drug Delivery Systems. IntechOpen: London, UK.
]Search in Google Scholar
[
Pati R., Shevtsov M., Sonawane A. (2018). Nanoparticle vaccines against infectious diseases. Front. Immunol., 9: 2224.
]Search in Google Scholar
[
Prasad R.D., Sahoo A.K., Shrivastav O.P., Charmode N., Kamat R., Kajave N.G., Chauhan J., Banga S., Tamboli U., MS P., Atigre R.H. (2022). A review on aspects of nanotechnology in food science and animal nutrition. ES Food Agrofor., 8: 12–46.
]Search in Google Scholar
[
Prządka P., Buczak K., Frejlich E., Gąsior L., Suliga K., Kiełbowicz Z. (2021). The role of mesenchymal stem cells (MSCs) in veterinary medicine and their use in musculoskeletal disorders. Biomolecules, 11: 1141.
]Search in Google Scholar
[
Przybyszewska A., Barbosa C.H., Pires F., Pires J.R.A., Rodrigues C., Galus S., et al. (2023). Packaging of fresh poultry meat with innovative and sustainable ZnO/pectin bionanocomposite films—a contribution to the bio and circular economy. Coatings, 13: 1208.
]Search in Google Scholar
[
Rahman H.S., Othman H.H., Abdullah R., Edin H.Y.A.S., Al-Haj N.A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci., 8: 1769–1779.
]Search in Google Scholar
[
Reddy P.R.K., Yasaswini D., Reddy P.P.R., Kumar D.S., Elghandour M.M., Salem A.Z.M. (2023). Nanotechnology in veterinary sector: current applications, limitations and future perspective. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications, pp. 1541–1567. Springer.
]Search in Google Scholar
[
Reddy P.R.K., Yasaswini D., Reddy P.P.R., Zeineldin M., Adegbeye M.J., Hyder I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Vet. World, 13: 1685–1696.
]Search in Google Scholar
[
Remião M.H., Segatto N.V., Pohlmann A., Guterres S.S., Seixas F.K., Collares T. (2018). The potential of nanotechnology in medically assisted reproduction. Front. Pharmacol., 11: 994.
]Search in Google Scholar
[
Ricles L.M., Nam S.Y., Trevino E.A., Emelianov S.Y., Suggs L.J. (2014). A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B, 2: 8220–8230.
]Search in Google Scholar
[
Rios T.B., Maximiano M.R., Feitosa G.C., Malmsten M., Franco O.L. (2024). Nanosensors for animal infectious disease detection. Sens. Bio-Sens. Res., 43: 100622.
]Search in Google Scholar
[
Saadeldin I.M., Khalil W.A., Alharbi M.G., Lee S.H. (2020). The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals, 10: 2281.
]Search in Google Scholar
[
Santos-Jimenez Z., Guillen-Gargallo S., Encinas T., Berlinguer F., Veliz-Deras F.G., Martinez-Ros P., Gonzalez-Bulnes A. (2020). Use of propylene-glycol as a cosolvent for GnRH in synchronization of estrus and ovulation in sheep. Animals, 10: 897.
]Search in Google Scholar
[
Sawutdeechaikul P., Cia F., Bancroft G.J., Wanichwecharungruang S., Sittplangkoo C., Palaga T. (2019). Oxidized carbon nanosphere-based subunit vaccine delivery system elicited robust Th1 and cytotoxic T cell responses. J. Microbiol. Biotechnol., 29: 489–499.
]Search in Google Scholar
[
Sekimukai H., Iwata-Yoshikawa N., Fukushi S., Tani H., Kataoka M., Suzuki T., Nagata N. (2020). Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol., 64: 33–51.
]Search in Google Scholar
[
Semeano A.T., Tofoli F.A., Corrêa-Velloso J.C., de Jesus Santos A.P., Oliveira-Giacomelli Á., Cardoso R.R., Pessoa M.A., da Rocha E.L., Ribeiro G., Ferrari M.F.R., Pereira L.V., Teng Y.D., Petri D.F.S., Ulrich H. (2022). Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev. Rep., 18: 1337–1354.
]Search in Google Scholar
[
Shafi B.U.D., Kumar R., Jadhav S.E., Kar J. (2020). Effect of zinc nanoparticles on milk yield, milk composition and somatic cell count in early-lactating Barbari does. Biol. Trace Elem. Res., 196: 96–102.
]Search in Google Scholar
[
Shahin M.A., Khalil W.A., Saadeldin I.M., Swelum A.A., El-Harairy M.A. (2020). Comparison between the effects of adding vitamins, trace elements, and nanoparticles to SHOTOR extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals, 10: 78.
]Search in Google Scholar
[
Shen W.B., Plachez C., Tsymbalyuk O., Tsymbalyuk N., Xu S., Smith A.M., Michel S.L., Yarnell D., Mullins R., Gullapalli R.P., Puche A. (2016). Cell-based therapy in TBI: magnetic retention of neural stem cells in vivo. Cell Transplant., 25: 1085–1099.
]Search in Google Scholar
[
Siddharth S. (2022). Stem cell biology: an overview. In Biotechnological Advances for Microbiology, Molecular Biology, and Nanotechnology, pp. 297–310.
]Search in Google Scholar
[
Sreekanth K., Sharath K.P., Midhun Dominic C.D., Radhakrishnan E.K. (2024). Microbial load reduction in stored raw beef meat using chitosan/starch-based active packaging films incorporated with cellulose nanofibers and cinnamon essential oil. Meat Sci., 216: 109552.
]Search in Google Scholar
[
Sun X., Gamal M., Nold P., Said A., Chakraborty I., Pelaz B., et al. (2019). Tracking stem cells and macrophages with gold and iron oxide nanoparticles: the choice of the best suited particles. Appl. Mater. Today, 15: 267–279.
]Search in Google Scholar
[
Teng Z., Sun S., Luo X., Zhang Z., Seo H., Xu X., Huang J., Dong H., Mu S., Du P., Zhang Z., Guo H. (2021). Bi-functional gold nanocages enhance specific immunological responses of foot-and-mouth disease virus-like particles vaccine as a carrier and adjuvant. Nanomedicine, 33: 102358.
]Search in Google Scholar
[
Tewari A., Jain B., Brar B., Prasad G., Prasad M. (2021). Biosensors: modern tools for disease diagnosis and animal health monitoring. In Biosensors in Agriculture: Recent Trends and Future Perspectives, pp. 387–414.
]Search in Google Scholar
[
Thwala L.N., Ndlovu S.C., Mpofu K.T., Lugongolo M.Y., Mthunzi-Kufa P. (2023). Nanotechnology-based diagnostics for diseases prevalent in developing countries: current advances in point-of-care tests. Nanomaterials, 13: 1247.
]Search in Google Scholar
[
TS A., Shalumon K.T., Chen J.P. (2019). Applications of magnetic liposomes in cancer therapies. Curr. Pharm. Des., 25: 1490–1504.
]Search in Google Scholar
[
Usman K.A.S., Maina J.W., Seyedin S., Conato M.T., Payawan L.M. Jr, Dumée L.F., Razal J.M. (2020). Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Mater., 12: 58.
]Search in Google Scholar
[
Veclin C., Desmet C., Pradel A., Valsesia A., Ponti J., El Hadri H., Maupas T., Pellerin V., Gigault J., Grassl B., Reynaud S. (2022). Effect of the surface hydrophobicity–morphology– functionality of nanoplastics on their homoaggregation in seawater. ACS ES&T Water, 2: 88–95.
]Search in Google Scholar
[
Vo-Van Q.B., Duong T.H., Le T.K.A. (2023). Biosynthesis of silver nanoparticles using curcumin against the bovine mastitis bacteria. J. Cent. Eur. Agric., 24: 505–512.
]Search in Google Scholar
[
Walewska M., Małek A., Taciak B., Wojtalewicz A., Wilk S., Wojtkowska A., Zabielska-Koczywąs K., Lechowski R. (2023). PEG-liposomal doxorubicin as a potential agent for canine metastatic osteosarcoma—in vitro and ex ovo studies. J. Vet. Res., 67: 297.
]Search in Google Scholar
[
Wang K., Lu X., Lu Y., Wang J., Lu Q., Cao X., Yang Y., Yang Z. (2022). Nanomaterials in animal husbandry: research and prospects. Front. Genet., 13: 915911.
]Search in Google Scholar
[
Wang M., Yang X., Zhang P., Cai L., Yang X., Chen Y., Jing Y., Kong J., Yang X., Sun F.L. (2016). Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv. Sci., 3: 1500393.
]Search in Google Scholar
[
Wang X., Bai R. (2023). Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv., 30: 2256495.
]Search in Google Scholar
[
Weeratunga P., Harman R.M., Van de Walle G.R. (2023). Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front. Vet. Sci., 10: 1129287.
]Search in Google Scholar
[
Williams A., Bennison J.J., Mackenzie A.M., Sinclair L.A. (2024). Feeding nanoparticles of copper oxide coated with lysine with or without added antagonists affects the copper status but not the performance of Holstein dairy cows. J. Dairy Sci., 107: 9277–9288.
]Search in Google Scholar
[
Wu L., Wang C., Li Y. (2022). Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine, 17: 1567–1583.
]Search in Google Scholar
[
Xie S., Ying Z., Xiu Z., Sun Y., Yang Q., Gao H., Wu Y. (2024). Zinc oxide nanoparticles improve lactation and metabolism in dairy goats by modulating the rumen microbiota. Front. Microbiol., 15: 1483680.
]Search in Google Scholar
[
Yang Y., Xing R., Liu S., Qin Y., Li K., Yu H., Li P. (2020). Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr. Polym., 229: 115423.
]Search in Google Scholar
[
Ying Z., Xie S., Xiu Z., Sun Y., Yang Q., Gao H., Fan W., Wu Y. (2025). Under heat stress conditions, selenium nanoparticles promote lactation through modulation of rumen microbiota and metabolic processes in dairy goats. Sci. Rep., 15: 9063.
]Search in Google Scholar
[
Younis S., Zia R., Tahir N., Bukhari S.Z., Khan W.S., Bajwa S.Z. (2022). Nanosensors for animal health monitoring. In Nanosensors for Smart Agriculture, pp. 509–529. Elsevier.
]Search in Google Scholar
[
Yuan Y.G., Peng Q.L., Gurunathan S. (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 18: 569.
]Search in Google Scholar
[
Zhao C., Song X., Jin W., Wu F., Zhang Q., Zhang M., Shen J. (2019). Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta, 1056: 108–116.
]Search in Google Scholar
[
Zorkina Y., Abramova O., Ushakova V., Morozova A., Zubkov E., Valikhov M., Melnikov P., Majouga A., Chekhonin V. (2020). Nanocarrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules, 25: 5294.
]Search in Google Scholar