[
AOAC (1995 a). AOAC official methods 920.39, fat (crude) or ether extract in animal feed, final action in: AOAC Official Methods of Analysis. 16th Edition, 1(4): 17.
]Search in Google Scholar
[
AOAC (1995 b). AOAC Official Methods 942.05 Ash of Animal Feed. Final Action: AOAC Official Methods of Analysis. 16th Edition, 1(4): 4.
]Search in Google Scholar
[
AOAC (1995 c). AOAC Official Method 978.10 Fiber (Crude) in Animal Feed –Fritted Glass Crucible Method in: AOAC Official Method of Analysis, 16th Edition, 1(4):19.
]Search in Google Scholar
[
AOAC (1996). AOAC Official Methods Moisture in animal feed, Method 930.15. 16th Edition. Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
]Search in Google Scholar
[
AOAC (1999). Official Methods of Analysis of Association of Official Analytical Chemists. Method 97.09. 16th Edition, 5th Rev., AOAC International, Gaithersburg, MD, USA.
]Search in Google Scholar
[
AOAC (2001). Official Methods of Analysis of Association of Official Analytical Chemists. Official method 2001.11, protein (crude) in animal feed, forage (plant and tissue), grain, and oilseed. First Action 2002, AOAC International Gaithersburg MD, USA.
]Search in Google Scholar
[
AOAC (2005). Official Method 994.12 Amino Acids in Feeds. Association of Official Analytical Chemists. 18th ed, Washington DC.
]Search in Google Scholar
[
Ardra M., Pradhan C., Das S. (2024). The effect of fishmeal replacement with organic acid fermented black soldier fly (Hermetia illucens) larvae meal on growth, nutrient utilization, metabolic enzyme activity, antioxidant status and immunity in pangasius (Pangasianodon hypophthalmus). Aquaculture, 591: 741114.
]Search in Google Scholar
[
AVMA (2007). American Veterinary Medical Association (AVMA). AVMA Guidelines on euthanasia (Formerly: Report of the AVMA of the AVAM Panel on Euthanasia) June 2007 39. Available at https://olaw.nih.gov/sites/default/files/Euthanasia2007.pdf. (Accessed 07 March 2023).
]Search in Google Scholar
[
Bhendarkar M.P., Kalbande S.R. (2022). GIFT tilapia for climate smart aquaculture. Technical Bulletin no. 38. ICAR –National Institute of Abiotic Stress Management Baramati, Pune, Maharashtra, pp. 27.
]Search in Google Scholar
[
Bondari K., Sheppard D. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture, 24: 103–109.
]Search in Google Scholar
[
Bonomini M.G., Prandi B., Calgiani A. (2024). Black soldier fly (Hermetia illucens L.) whole and fractionated larvae: In vitro protein digestibility and effect of lipid chitin removal. Food Res. Int., 196: 115102.
]Search in Google Scholar
[
Bruni L., Belghit J., Lock E., Secci G., Taiti C., Parisi G. (2019). Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric., 100.
]Search in Google Scholar
[
Caballero M.J., Lopez-Calero G., Socorro J., Roo F.G., Izquierdo M.S., Fernandez A.J. (1999). Combined effect of lipid level and fishmeal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture, 179: 277–290.
]Search in Google Scholar
[
Caligiani A., Marseglia A., Leni G., Baldassarre S., Maistrello L., Dossena A., Sforza, S. (2018). Composition of black soldier fly prepupae and systemic approaches for extraction and fractionation of proteins, lipids, and chitin. Food Res. Int., 105: 812–820.
]Search in Google Scholar
[
de Oliveira C.G., Freitas D. de A., Ribeiro P.A.P., Teixeira R.R.C., de Silva R.F., Gamarano P.G., de Araujo R.D., Prado V.G.L., Guilherme G. de O., Paulino R.R., Costa L.S. (2024). Impact of replacing fish meal with black soldier fly (Hermetia illucens) meal on diet accepting in juvenile Nile tilapia: Palatability and nutritional and health considerations for dietary preference. Aquac. Res., 3409955: 1–13.
]Search in Google Scholar
[
Diener S., Zurbrügg C., Tockner K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed, 1: 261–270.
]Search in Google Scholar
[
Eggink K.M., Dalsgaard J. (2023). Chitin contents in different black soldier fly (Hermetia illucens) life stages. JIFF, 9: 855–863.
]Search in Google Scholar
[
Eggink K.M., Pedersen P.B., Lund I., Dalsgaard J. (2022). Chitin digestibility and intestinal exochitinase activity in Nile tilapia and rainbow trout fed different black soldier fly larvae meal size fractions. Aquac. Res., 53: 5536–5546.
]Search in Google Scholar
[
El Sayed A.F.M., Tacon A.G.J. (1997). Fish meal replacers for tilapia: A review. In: Feeding tomorrow’s fish, Tacon A.G.J., Basurco B. (eds). Zaragoza, CIHEAM, pp. 205–224.
]Search in Google Scholar
[
Fan K., Liu H., Pei Z., Brown P.B., Huang Y. (2023). A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile catfish. Anim. Feed Sci. Technol., 295: 115542.
]Search in Google Scholar
[
FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. The State of World Fisheries and Aquaculture (SOFIA), FAO, Rome, Italy, pp. 266.
]Search in Google Scholar
[
Feng H., Zhang Y., Liang X.F., He S., Li L. (2021). Dietary supplementation of exogenous probiotics reduces excessive liver lipid deposition in Chinese perch (Siniperca chuatsi). Aquac. Res., https://doi.org/10.1111/are.15413
]Search in Google Scholar
[
Fontes T.V., de Oliveira K.R.B., Almeida I.L.G., Orlando T.M., Rodrigues B., da Costa D.V., Rosa P.V. (2019). Digestibility of insect meals for Nile tilapia fingerlings, J. Anim., 9: 181.
]Search in Google Scholar
[
Gougbedji A., Detilleux J., Lalèyè P.A., Francis F., Megido R.C. (2022). Can insect meal replace fishmeal? A meta-analysis of the effects of black soldier fly on fish growth performances and nutritional values, J. Anim., 12: 1700.
]Search in Google Scholar
[
Greenpeace (2019). A waste of fish: food security under threat from the fishmeal and fish oil industry in West Africa. Greenpeace International, Amsterdam, Netherlands, pp. 1–51.
]Search in Google Scholar
[
Han L., Zhang S., Ma J., Liu X. (2012). Research and optimization of technological process based on fermentation for production of seaweed feed. Green Sustain. Chem., 2: 47–54.
]Search in Google Scholar
[
Hassaan M.S., Solton M.A., Abdel-Moez A.M. (2015). Nutritive value of soybean meal after solid-state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol., 201: 89–98.
]Search in Google Scholar
[
Iyayi E.A., Losel D.M. (2001). Changes in carbohydrate fractions of cassava peel following fungal solid-state fermentation. JFTA, 6: 101–103.
]Search in Google Scholar
[
Jahan R., Tipu M.M.H., Haque M.M., Salam M.A. (2021). Black soldier fly (Hermetia illucens) larvae meal as a fish meal replacement in diets for nursing common carp (Cyprinus carpio) fry. AgriRxiv. http://dx.doi.org/10.31220/agriRxiv.2021.00030
]Search in Google Scholar
[
Kari Z.A., Tellez-Isaias G., Humid N.K.A., Rusil N.D., Mat K., Sukri S.A.M., Kabir M.A., Ishak A.R. (2023). Effects of fishmeal substitution with black soldier fly (Hermetia illucens) on growth performance, feed stability, blood biochemistry, and liver and gut morphology of Siamese fighting fish (Betta splendens). Aquac. Nutr., 6676953: 1–15.
]Search in Google Scholar
[
Kariuki M.W., Barwani D.K., Mwashi V., Kioko J.K., Munguti J.M., Tanga C.M., Kiiru P., Gichea M.G., Osuga I.M. (2024). Partial replacement of fishmeal with black soldier fly larvae meal in Nile tilapia diets improves performance and profitability in earthen pond. Sci. African, 24: e02222.
]Search in Google Scholar
[
Karlund A., Gomez-Gallego C., Kohonen J., Palo-Oja O., El-Nezami H., Kolehmainen M. (2020). Harnessing microbes for sustainable development: Food fermentation as a tool for improving the natural quality of alternative protein sources. J. Nutr., 14: 1020.
]Search in Google Scholar
[
Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2012). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita). Proc. Zool. Soc., 66: 64–73.
]Search in Google Scholar
[
Kieβling M., Franke K., Heinz V., Aganovic K. (2022). Relationship between substrate composition and larval weight: a simple growth model for black soldier fly larvae. JIFF, 9: 1–10.
]Search in Google Scholar
[
Li S., Ji H., Zhang B., Zhou J., Yu H. (2017). Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture, 477: 62–70.
]Search in Google Scholar
[
Limbu S.M., Shoko A.P., Ulotu E.E., Luvanga S.A., Munyi F.M., John J.O., Opiyo M.A. (2022). Black soldier fly (Hermetia illucens L.) larvae meal improves growth performance, feed efficiency, and economic returns of Nile tilapia (Oreochromis niloticus L.) fry. Aquac. Fish Fisher., 2: 167–178.
]Search in Google Scholar
[
Manpreet S., Sawraj S., Sachin D., Pankaj S., Banerjee U.C. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malays. J. Microbiol., 1: 1–9.
]Search in Google Scholar
[
Mbokane E.M., Mbokane L.M., Fouche C.H. (2022). The effect of fishmeal replacement with acid-fermented chicken silage on growth, digestive enzyme activity and histology of the intestine and liver of Mozambique tilapia (Oreochromis mossambicus). Aquac. Int., 30: 1–22.
]Search in Google Scholar
[
Melanchon F., de Mercado F., Pula H.J., Cardenete G., Barroso F.G., Fabrikov D., Lourenco H.M., Pessoa M., Lagos L., Wetththasinghe P., Cortes M., Tomas-Almenar C. (2022). Fishmeal dietary replacement up to 50%: A comparative study of two insect meals for rainbow trout (Oncorhynchus mykiss). J. Anim., 12: 179.
]Search in Google Scholar
[
Muin H., Taufek N.M., Kamarudin M.S., Razak S.A. (2017). Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iran. J. Fish. Sci., 16: 567–577.
]Search in Google Scholar
[
Mumford S.L. (2004). Histology for Finfish. NWFHS Laboratory Manual, Second Edition, Chapter 13: 1–12.
]Search in Google Scholar
[
Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kieronczyk B., Józefiak A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.
]Search in Google Scholar
[
NSH (2001). National Society for Histotechnology. Guidelines for Hematoxylin and Eosin Staining, www.nsh.org
]Search in Google Scholar
[
Ouko K.O., Mboya J.B., Mukhebi A.W., Obiero K.O., Ogello K.O., Munguti J.M., Tanga C.M. (2024). Effect of replacing fish meal with black soldier fly larvae meal on growth performance and economic efficiency of Nile tilapia. Fundam. Appl. Agric., 9: 1–9.
]Search in Google Scholar
[
Pandey A., Selvakumar P., Soccol C.R., Nigam P. (1999). Solid-state fermentation for the production of industrial enzymes. J. Curr. Sci., 77: 149–162.
]Search in Google Scholar
[
Pascon G., Cardinaletti G., Daniso E., Bruni L., Messina M., Parisi G., Tulli F. (2024). Effect of dietary chitin on growth performance, nutrient utilization, and metabolic response in rainbow trout (Oncorhynchus mykiss). Aquacult. Rep., 37: 102244.
]Search in Google Scholar
[
Peh K.L., Shapawi R., Lim L.S. (2021). Black cricket (Gryllus bimaculatus) meal as a protein source in the practical diets for juvenile white leg shrimp (Litopenaeus vannamei), Iran. J. Fish. Sci., 20: 731–740.
]Search in Google Scholar
[
Perera A.D., Bhujel R.C. (2021). Field cricket meal (Gryllus bimaculatus) meal (FCM) to replace fishmeal in the diets for sex reversal and nursing of Nile tilapia (O. niloticus) fry. Aquac. Res., 52.
]Search in Google Scholar
[
Perera G.S.C., Bhujel R.C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation and breeding performances of guppy (Poecilia reticulata), Aquac. Rep., 25: 101260.
]Search in Google Scholar
[
Perera G.S.C., Afridin M.R., Adikari A.M.A.N., Heenatigala P.P.M., Maduka K.L.W.T., Dunusinghe S.B.K. (2023 a). Replacing the unsustainable and wild-caught fishmeal with field cricket (Gryllus bimaculatus) meal in catla (Catla catla) fry diet: Effect for growth, in vivo digestibility, carcass composition, histopathological alterations, and disease tolerance. Aquac. Int., 32: 2609–2626.
]Search in Google Scholar
[
Perera G.S.C., Perera A.D., Piyavorasakul C., Pumpuang S. (2023b). Fishmeal replacement by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals in Nile tilapia (Oreochromis niloticus) fingerling feed. Aquacult. Stud., 23(S1), AQUAST1187.
]Search in Google Scholar
[
Plaipetch P., Yakupitiyage A. (2012). Use of yeast-fermented canola meal to replace fishmeal in the diet of Asian seabass Lates calcarifer (Bloch, 1790). J. Aquac. Res. Dev., 3.
]Search in Google Scholar
[
Qazi J.I., Mumtaz S., Shakir H.A. (2011). Improving fish feed by yeast solid-state fermentation. Punjab Univ. J. Zool., 26: 21–29.
]Search in Google Scholar
[
Roslan N.A., Sukri S.A.M., Wei L.S., Shahjahan M., Rohani M.F., Yea C.S., Kabir M.A., Guru A., Goh K.W., Kallen P., Kari Z.A. (2024). Replacement of fishmeal by fermented spent coffee ground: Effects on growth performance, feed stability, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 36: 102073.
]Search in Google Scholar
[
Samaddar A., Kaviraj A., Saha S. (2015). Utilization of fermented animal by-product blend as fishmeal replacer in the diet of Labeo rohita. Aquac. Rep., 1: 28–36.
]Search in Google Scholar
[
Sangsawang A., Kovitvadhi S., Pewhom A., Kovitvadhi U., Kovitvadhi A., Wongoutong C., Chatchaiphan S., Pankhao N. (2024). Impacts of substituting fish meal with full-fat or defatted black soldier fly (Hermetia illucens) larvae on growth, quality, and health of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Rep., 38: 102348.
]Search in Google Scholar
[
Sedanza M.G.C., Posadas N.G., Jr Serrano A.E., Nunal S.N., Pedroso F., Yoshikawa T. (2016). Development of aquafeed ingredient by solid-state fermentation of the crinklegrass, Rhizoclonium riparium on a laboratory scale. AACL Bioflux, 9: 733–740.
]Search in Google Scholar
[
Shahin S., Okomoda V.T., Ma H., Abdulla M.H.D.I. (2023). Sustainable alternative for aquaculture: State of the art and future perspective. PLSU, 01: 62–96.
]Search in Google Scholar
[
Sibbald I.R., Price K., Barrette J.P. (1980). True metabolizable value for poultry of commercial diets measured by bioassay and predicted from chemical data. Poult. Sci., 59: 808–811.
]Search in Google Scholar
[
Siddek M.A.B., Howieson J., Ilham I., Fotedar R. (2018.) Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and non-fermented tuna hydrolysate as fishmeal protein replacement ingredients. Peer J., 6: E4870.
]Search in Google Scholar
[
Smets R., Claes J., Borget M.V.D. (2021). On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal. Bioanal. Chem., 413: 1–13.
]Search in Google Scholar
[
Spisni E., Tugnoli M., Ponticelli A., Mordenti T., Tomasi V. (1998). Hepatic steatosis in artificially fed marine teleosts. J. Fish Dis., 21: 177–184.
]Search in Google Scholar
[
Tacon A.G.J., Metian M. (2015). Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish Sci. Aquac., 23: 1–10.
]Search in Google Scholar
[
Taufek N.M., Muin H., Raji A.A., Yusof H.M., Alias Z., Razak S.A. (2017). Potential of field cricket’s meal (Gryllus bimaculatus) in the diet of African catfish. J. Appl. Anim. Res., 46: 541–546.
]Search in Google Scholar
[
Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. (2012). Heavy metals toxicity and the environment. Exp Suppl., 101: 133–164.
]Search in Google Scholar
[
Tippayadara N., Dawood M.A.O., Krutmuang P., Hoseinifar S.H., Doan H.V., Paoucci M. (2021). Replacement of fishmeal by black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucous immunity of Nile tilapia (Oreochromis niloticus). Animals, 11: 193.
]Search in Google Scholar
[
Truzzi C., Girolametti F., Giovannini L., Olivotto I., Zarantoniello M., Scarponi G., Annibaldi A., Illuminati S. (2022). New eco-sustainable feed in aquaculture: influence of insect-based diets on the content of potentially toxic elements in the experimental model zebrafish (Danio rerio). Molecules, 27: 818.
]Search in Google Scholar
[
Xie M., Zhou W., Xie Y., Li Y., Zhang Z., Yang Y., Olsen R.E., Ran C., Zhou Z. (2021). Effects of Cetobacterium somerae fermentation product on gut and liver health of common carp (Cyprinus carpio) fed diet supplemented with ultra-micro ground mixed plant proteins. Aquaculture, 543: 736943.
]Search in Google Scholar
[
Yakti W., Schulz S., Marten V., Mewis I., Padmanabha M., Hempel A. -J., Kobelski A., Streif S., Ulrichs C. (2022). The effect of rearing scale and density on the growth and nutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae. Sustainability, 14: 1772.
]Search in Google Scholar
[
Zarantoniello M., Randazzo B., Truzzi C., Giorgini E., Marcellucci C., Vargs-Abundez J.A., Zimbelli A., Annibaldi A., Parisi G., Tulli F., Riolo P., Olivotto I. (2019a). A six-months study on black soldier fly (Hermetia illucens) based diets in zebrafish. Sci. Rep., 9: 8598.
]Search in Google Scholar
[
Zarantoniello M., Zimbelli A., Randazzo B., Compagni M.D., Truzzi C., Antonucci M., Riolo P., Loreto M. (2019 b). Black soldier fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 518: 734659.
]Search in Google Scholar