Open Access

Liposome-Based Drug and Vaccine Delivery System in Veterinary Application: Recent Advancement and Future Trends –A Review

, , , , , , , , , ,  and   
Jul 24, 2025

Cite
Download Cover

Abbasi H., Kouchak M., Mirveis Z., Hajipour F., Khodarahmi M., Rahbar N., Handali S. (2023). What we need to know about liposomes as drug nanocarriers: an updated review. Adv. Pharm. Bull., 13: 7–23. Search in Google Scholar

Agarwal K. (2022). Liposome assisted drug delivery –an updated review. Indian J. Pharm. Sci., 84. Search in Google Scholar

Ahmadi Ashtiani H.R., Bishe P., Lashgari N.-A., Nilforoushzadeh M.A., Zare S. (2016). Liposomes in cosmetics. J. Skin Stem Cell., 3. Search in Google Scholar

Algburi A., Comito N., Kashtanov D., Dicks L.M.T., Chikindas M.L. (2017). Control of biofilm formation: antibiotics and beyond. Appl. Environ. Microbiol., 83. Search in Google Scholar

Alghuthaymi M.A., Hassan A.A., Kalia A., Ahl R.M.H.S. El, Hamaky A.A.M. El, Oleksak P., Kuca K., Abd-Elsalam K.A. (2021). Antifungal nano-therapy in veterinary medicine: current status and future prospects. J. Fungi., 7: 494. Search in Google Scholar

Andra V.V.S.N.L., Pammi S.V.N., Bhatraju L.V.K.P., Ruddaraju L.K. (2022). A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. BioN-anoScience, 12: 274–291. Search in Google Scholar

André A.S., Dias J.N.R., Aguiar S.I., Leonardo A., Nogueira S., Amaral J.D., Fernandes C., Gano L., Correia J.D.G., Cavaco M., Neves V., Correia J., Castanho M., Rodrigues C.M.P., Gaspar M.M., Tavares L., Aires-da-Silva F. (2023). Panobinostat-loaded folate targeted liposomes as a promising drug delivery system for treatment of canine B-cell lymphoma. Front. Vet. Sci., 10. Search in Google Scholar

Anon (2019). Animal medicine global market report 2019. The Market Research Company. https://www.prnewswire.com/news-releases/animal-medicine-global-market-report-2019-300839972.html [accessed March 29, 2024]. Search in Google Scholar

Bai D.-P., Lin X.-Y., Huang Y.-F., Zhang X.-F. (2018). Theranostics aspects of various nanoparticles in veterinary medicine. Intl. J. Mol. Sci., 19: 3299. Search in Google Scholar

Baig N., Kammakakam I., Falath W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mat. Adv., 2: 1821–1871. Search in Google Scholar

Bailey R. (2022). Nocita®. https://www.mynavas.org/post/nocita [accessed December 25, 2023]. Search in Google Scholar

Barenholz Y. (2012). Doxil® –The first FDA-approved nano-drug: lessons learned. J. Control. Release., 160: 117–134. Search in Google Scholar

Becker W.M., Mama K.R., Rao S., Palmer R.H., Egger E.L. (2013). Prevalence of dysphoria after fentanyl in dogs undergoing stifle surgery. Vet. Surg., 42: 302–307. Search in Google Scholar

Belshaw Z., Asher L., Dean R.S. (2016). The attitudes of owners and veterinary professionals in the United Kingdom to the risk of adverse events associated with using non-steroidal anti-inflammatory drugs (NSAIDs) to treat dogs with osteoarthritis. Prev. Vet. Med., 131: 121–126. Search in Google Scholar

Bidart J., Kornuta C., Gammella M., Gnazzo V., Soria I., Langellotti C., Mongini C., Galarza R., Calvinho L., Lupi G., Quattrocchi V., Marcipar I., Zamorano P. (2020). A new cage-like particle adjuvant enhances protection of foot-and-mouth disease vaccine. Front. Vet. Sci., 7. Search in Google Scholar

Biller B., Berg J., Garrett L., Ruslander D., Wearing R., Abbott B., Patel M., Smith D., Bryan C. (2016). 2016 AAHA Oncology Guidelines for Dogs and Cats. J. Am. Anim. Hospital Assoc., 52: 181–204. Search in Google Scholar

Boston S., Henderson R.A. (2014). Role of surgery in multimodal cancer therapy for small animals. Vet. Clin. North Am. Small Animal Prac., 44: 855–870. Search in Google Scholar

Bozzuto G., Molinari A. (2015). Liposomes as nanomedical devices. Intl. J. Nanomed., 10: 975–999. Search in Google Scholar

Bredlau A.L., Motamarry A., Chen C., McCrackin M.A., Helke K., Armeson K.E., Bynum K., Broome A.-M., Haemmerich D. (2018). Localized delivery of therapeutic doxorubicin dose across the canine blood–brain barrier with hyperthermia and temperature sensitive liposomes. Drug Deliv., 25: 973–984. Search in Google Scholar

Bulbake U., Doppalapudi S., Kommineni N., Khan W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics, 9: 12. Search in Google Scholar

Carrique-Mas J., Van Cuong N., Truong B.D., Phu D.H., Phuc T.M., Turner H., Thwaites G., Baker S. (2019). Affordability of antimicrobials for animals and humans in Vietnam: a call to revise pricing policies. Intl. J. Antimicrob. Agents., 54: 269–270. Search in Google Scholar

Carvalho S.G., Araujo V.H.S., dos Santos A.M., Duarte J.L., Silvestre A.L.P., Fonseca-Santos B., Villanova J.C.O., Gremião M.P.D., Chorilli M. (2020). Advances and challenges in nanocarriers and nanomedicines for veterinary application. Intl. J. Pharm., 580. Search in Google Scholar

Castelli D.D., Boffa C., Giustetto P., Terreno E., Aime S. (2014). Design and testing of paramagnetic liposome-based CEST agents for MRI visualization of payload release on pH-induced and ultra-sound stimulation. J. Biol. Inorg. Chem., 19: 207–214. Search in Google Scholar

Chariou P.L., Ortega-Rivera O.A., Steinmetz N.F. (2020). Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano., 14: 2678–2701. Search in Google Scholar

Chehelgerdi M., Chehelgerdi M., Allela O.Q.B., Pecho R.D.C., Jayasankar N., Rao D.P., Thamaraikani T., Vasanthan M., Viktor P., Lakshmaiya N., Saadh M.J., Amajd A., Abo-Zaid M.A., Castillo-Acobo R.Y., Ismail A.H., Amin A.H., Akhavan-Sigari R. (2023). Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer., 22: 169. Search in Google Scholar

Cheng X., Yan H., Pang S., Ya M., Qiu F., Qin P., Zeng C., Lu Y. (2022). Liposomes as multifunctional nano-carriers for medicinal natural products. Front. Chem., 10. Search in Google Scholar

Cohen N.D., Giguère S., Burton A.J., Rocha J.N., Berghaus L.J., Brake C.N., Bordin A.I., Coleman M.C. (2016). Use of liposomal gentamicin for treatment of 5 foals with experimentally induced Rhodococcus equi pneumonia. J. Vet. Intern. Med., 30: 322. Search in Google Scholar

da Silva C.F., Almeida T., de Melo Barbosa R., Cardoso J.C., Morsink M., Souto E.B., Severino P. (2020). New trends in drug delivery systems for veterinary applications. Pharm. Nanotechnol., 9: 15–25. Search in Google Scholar

DeFrancesco L. (2020). Whither COVID-19 vaccines? Nat. Biotechnol., 38: 1132–1145. Search in Google Scholar

Degobert G., Aydin D., Mosqueira F., Araújo R.S. (2021). Lyophilization of nanocapsules: instability sources, formulation and process parameters. Pharmaceutics, 13: 1112. Search in Google Scholar

Deshpande P.P., Biswas S., Torchilin V.P. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine (London, England), 8: 1509–1528. Search in Google Scholar

De Sousa Lobato K.B., Paese K., Forgearini J.C., Guterres S.S., Jablonski A., De Oliveira Rios A. (2013). Characterisation and stability evaluation of bixin nanocapsules. Food Chem., 141: 3906–3912. Search in Google Scholar

Dessale M., Mengistu G., Mengist H.M. (2022). Nanotechnology: a promising approach for cancer diagnosis, therapeutics and theragnosis. Intl. J. Nanomed., 17: 3735–3749. Search in Google Scholar

Dhakal S., Cheng X., Salcido J., Renu S., Bondra K., Lakshmanappa Y.S., Misch C., Ghimire S., Feliciano-Ruiz N., Hogshead B., Krakowka S., Carson K., McDonough J., Lee C.W., Renukaradhya G.J. (2018). Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Intl. J. Nanomed., 13: 6699–6715. Search in Google Scholar

Dos Anjos D.S., Bueno C., Magalhães L.F., Magalhães G.M., Mattos-Junior E., Pinto M.M.R., De Nardi A.B., Brunner C.H.M., Leis-Filho A.F., Calazans S.G., Fonseca-Alves C.E. (2019). Electrochemotherapy induces tumor regression and decreases the proliferative index in canine cutaneous squamous cell carcinoma. Sci. Rep., 9: 15819. Search in Google Scholar

Eleraky N.E., Allam A., Hassan S.B., Omar M.M. (2020). Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics, 12: 142. Search in Google Scholar

El-Sayed A., Kamel M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res., 27: 19073–19086. Search in Google Scholar

Epstein M.E., Rodan I., Griffenhagen G., Kadrlik J., Petty M.C., Robertson S.A., Simpson W. (2015). 2015 AAHA/AAFP Pain Management Guidelines for Dogs and Cats. J. Feline Med. Surg., 17: 251–272. Search in Google Scholar

Faria Lainetti P. de, Zuliani F., Leis-Filho A.F., Fonseca Alves R.H., Fonseca-Alves C.E. (2020). Controlled drug delivery vehicles in veterinary oncology: state-of-the-art and future directions. Processes, 8. Search in Google Scholar

Farjadian F., Ghasemi A., Gohari O., Roointan A., Karimi M., Hamblin M.R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 14: 93–126. Search in Google Scholar

Fathi S., Oyelere A.K. (2016). Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med. Chem., 8: 2091–2112. Search in Google Scholar

FDA (2016). NADA 141-461 Nocita® dog. Freedom of information summary: original new animal drug application. US FDA. https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/3952 [accessed December 25, 2023]. Search in Google Scholar

FDA (2018). NADA 141-461. Nocita cat®. Freedom of information summary: original new animal drug application. US FDA. https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/3952 [accessed December 25, 2023]. Search in Google Scholar

Ferreira M., Ogren M., Dias J.N.R., Silva M., Gil S., Tavares L., Aires-da-Silva F., Gaspar M.M., Aguiar S.I. (2021). Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules, 26: 2047. Search in Google Scholar

Filipczak N., Pan J., Yalamarty S.S.K., Torchilin V.P. (2020). Recent advancements in liposome technology. Adv. Drug Deliv. Rev., 156: 4–22. Search in Google Scholar

Frolov V.A., Shnyrova A.V., Zimmerberg J. (2011). Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol., 3: a004747. Search in Google Scholar

Gao J., Ochyl L.J., Yang E., Moon J.J. (2017). Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Intl. J. Nanomed., 12: 1251–1264. Search in Google Scholar

Gatto M.S., Johnson M.P., Najahi-Missaoui W. (2024). Targeted liposomal drug delivery: overview of the current applications and challenges. Life, 14: 672. Search in Google Scholar

Ghosh R., De M. (2023). Liposome-based antibacterial delivery: an emergent approach to combat bacterial infections. ACS Omega, 8: 35442–35451. Search in Google Scholar

Giddam A.K., Zaman M., Skwarczynski M., Toth I. (2012). Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine, 7: 1877–1893. Search in Google Scholar

Gonzalez Gomez A., Hosseinidoust Z. (2020). Liposomes for antibiotic encapsulation and delivery. ACS Infect. Dis., 6: 896–908. Search in Google Scholar

Gordon-Evans W.J., Suh H.Y., Guedes A.G. (2019). Controlled, non-inferiority trial of bupivacaine liposome injectable suspension. J. Feline Med. Surg., 22: 916–921. Search in Google Scholar

Grubb T., Lobprise H. (2020). Local and regional anaesthesia in dogs and cats: descriptions of specific local and regional techniques (Part 2). Vet. Med. Sci., 6: 218–234. Search in Google Scholar

Guimarães D., Cavaco-Paulo A., Nogueira E. (2021). Design of liposomes as drug delivery system for therapeutic applications. Intl. J. Pharm., 601. Search in Google Scholar

Gyanani V., Haley J.C., Goswami R. (2021). Challenges of current anticancer treatment approaches with focus on liposomal drug delivery systems. Pharmaceuticals, 14. Search in Google Scholar

Handali S., Moghimipour E., Rezaei M., Ramezani Z., Kouchak M., Amini M., Angali K.A., Saremy S., Dorkoosh F.A. (2018). A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed. Pharmacother., 108: 1259–1273. Search in Google Scholar

Hassan A.A., El Hamaky A.M., Sayed El Ahl R.M., Oraby N.H., Man-sour M.K. (2020). Nanomaterials and nanocomposite applications in veterinary medicine. Multifunctional Hybrid Nanomater. Sustainable Agri-food Ecosystems, pp. 583–638. Search in Google Scholar

Hatakeyama H., Akita H., Harashima H. (2013). The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol. Pharm. Bull., 36: 892–899. Search in Google Scholar

Hill E.K., Li J. (2017). Current and future prospects for nanotechnology in animal production. J. Animal Sci. Biotechnol., 8: 26. Search in Google Scholar

Hu R., Liu H., Wang M., Li J., Lin H., Liang M., Gao Y., Yang M. (2020). An OMV-based nanovaccine confers safety and protection against pathogenic Escherichia coli via both humoral and predominantly Th1 immune responses in poultry. Nanomaterials, 10: 2293. Search in Google Scholar

Hu Y.-J., Ju R.-J., Zeng F., Qi X.-R., Lu W.-L. (2021). Liposomes in drug delivery: status and advances, In: Liposome-Based Drug Delivery Systems. Biomaterial Engineering, Lu W.L., Qi X.R. (eds). Springer, Berlin, Heidelberg, pp. 3–24. Search in Google Scholar

Hua S., Wu S.Y. (2013). The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol., 4. Search in Google Scholar

Hussain S. (2019). Immunization and vaccination, In: Psychiatry of Pandemics, Cham: Springer International Publishing, pp. 153–177. Search in Google Scholar

Islam Shishir M.R., Karim N., Gowd V., Zheng X., Chen W. (2019). Liposomal delivery of natural product: a promising approach in health research. Trends Food Sci. Tech., 85: 177–200. Search in Google Scholar

Jaafer N.S., Balqees H.A., Al-Bayati M.A. (2021). Comparison between Newcastle disease vaccine and liposomal entrapped Newcastle disease vaccine in chicks. J. Genet. Environ. Resour. Conserv., 9: 157–167. Search in Google Scholar

Johnson R.J., Kerr C.L., Enouri S.S., Modi P., Lascelles B.D.X., del Castillo J.R.E. (2017). Pharmacokinetics of liposomal encapsulated buprenorphine suspension following subcutaneous administration to cats. J. Vet. Pharmacol. Ther., 40: 256–269. Search in Google Scholar

Kang M.H., Yoon H.Y., Choi Y.W. (2017). RIPL peptide as a novel cell-penetrating and homing peptide: design, characterization, and application to liposomal nanocarriers for hepsin-specific intracellular drug delivery. Nanostruct. Cancer Ther., 129–157. Search in Google Scholar

Karunakaran B., Gupta R., Patel P., Salave S., Sharma A., Desai D., Benival D., Kommineni N. (2023). Emerging trends in lipid-based vaccine delivery: a special focus on developmental strategies, fabrication methods, and applications. Vaccines, 11. Search in Google Scholar

Kent M.S. (2013). Cats and chemotherapy: Treat as “small dogs” at your peril. J. Feline Med. Surg., 15: 419–424. Search in Google Scholar

Knight-Jones T.J.D., Edmond K., Gubbins S., Paton D.J. (2014). Veterinary and human vaccine evaluation methods. Proc. Royal Society B Biol. Sci., 281: 20132839. Search in Google Scholar

Kumari P., Ghosh B., Biswas S. (2016). Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 24: 179–191. Search in Google Scholar

Kumosani T., Yaghmoor S., Abdulaal W.H., Barbour E. (2020). Evaluation in broilers of aerosolized nanoparticles vaccine encapsulating immuno-stimulant and antigens of avian influenza virus/Mycoplasma gallisepticum. BMC Vet. Res., 16: 319. Search in Google Scholar

Large D.E., Abdelmessih R.G., Fink E.A., Auguste D.T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev., 176: 113851. Search in Google Scholar

Lascelles B.D.X., Rausch-Derra L.C., Wofford J.A., Huebner M. (2016). Pilot, randomized, placebo-controlled clinical field study to evaluate the effectiveness of bupivacaine liposome injectable suspension for the provision of post-surgical analgesia in dogs undergoing stifle surgery. BMC Vet. Res., 12. Search in Google Scholar

Le N.T.T., Cao V. Du, Nguyen T.N.Q., Le T.T.H., Tran T.T., Hoang Thi T.T. (2019). Soy lecithin-derived liposomal delivery systems: surface modification and current applications. Intl. J. Mol. Sci., 20: 4706. Search in Google Scholar

Levine D.G., Epstein K.L., Neelis D.A., Ross M.W. (2009). Effect of topical application of 1% diclofenac sodium liposomal cream on inflammation in healthy horses undergoing intravenous regional limb perfusion with amikacin sulfate. Am. J. Vet. Res., 70: 1323–1325. Search in Google Scholar

Li M., Du C., Guo N., Teng Y., Meng X., Sun H., Li S., Yu P., Galons H. (2019). Composition design and medical application of liposomes. Eur. J. Med. Chem., 164: 640–653. Search in Google Scholar

Lin T., Rodriguez C.O., Li Y. (2015). Nanomedicine in veterinary oncology. Vet. J., 205: 189–197. Search in Google Scholar

Liu P., Chen G., Zhang J. (2022). A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 27. Search in Google Scholar

Liu Y., Castro Bravo K.M., Liu J. (2021). Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz., 6: 78–94. Search in Google Scholar

Lopez M., Schachner E. (2015). Diagnosis, prevention, and management of canine hip dysplasia: a review. Vet. Med. (Auckland, N.Z.), 6: 181. Search in Google Scholar

Lúcia A., Valente L., Paulo P., Vieira De Sá M., Alcântara De Santana W. (2020). The importance of pharmaceutical care in veterinary medicine. Intl. J. Inform. Res. Rev., 7: 6809–6814. Search in Google Scholar

Luo W., Chen D., Wu M., Li Z., Tao Y., Liu Q., Pan Y., Qu W., Yuan Z., Xie S. (2019). Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J. Vet. Sci., 20. Search in Google Scholar

Madni A., Sarfraz M., Rehman M., Ahmad M., Akhtar N., Ahmad S., Tahir N., Ijaz S., Al-Kassas R., Löbenberg R. (2014). Liposomal drug delivery: a versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 17: 401. Search in Google Scholar

Mahendra Kumar S., Rajni Y., Sandeep Prasad T. (2023). Recent advances in nanotechnology. Intl. J. Nanomater., Nanotechnol. Nanomed., 9: 015–023. Search in Google Scholar

Martin M.S., Kleinhenz M.D., Viscardi A. V., Curtis A.K., Johnson B.T., Montgomery S.R., Lou M.E., Coetzee J.F. (2022). Effect of bupivacaine liposome suspension administered as a cornual nerve block on indicators of pain and distress during and after cautery dehorning in dairy calves. J. Dairy Sci., 105: 1603–1617. Search in Google Scholar

Mathiyazhakan M., Wiraja C., Xu C. (2018). A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett., 10: 10. Search in Google Scholar

Meena N.S., Sahni Y.P., Singh R.P. (2018). Applications of nano-technology in veterinary therapeutics. J. Entomol. Zool. Stud., 6: 167–175. Search in Google Scholar

Meeusen E.N.T., Walker J., Peters A., Pastoret P.P., Jungersen G. (2007). Current status of veterinary vaccines. Clin. Microbiol. Rev., 20: 489. Search in Google Scholar

Meier V.S., Beatrice L., Turek M., Poirier V.J., Cancedda S., Stiborova K., Körner M., Marconato L., Weyland M.S., Rohrer Bley C. (2019). Outcome and failure patterns of localized sinonasal lymphoma in cats treated with first-line single-modality radiation therapy: a retrospective study. Vet. Comparative Oncol., 17: 528–536. Search in Google Scholar

Moghimipour E., Rezaei M., Ramezani Z., Kouchak M., Amini M., Angali K.A., Dorkoosh F.A., Handali S. (2018). Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur. J. Pharm. Sci., 114: 166–174. Search in Google Scholar

Mohamed M., Abu Lila A.S., Shimizu T., Alaaeldin E., Hussein A., Sarhan H.A., Szebeni J., Ishida T. (2019). PEGylated liposomes: immunological responses. Sci. Technol. Adv. Mater., 20: 710. Search in Google Scholar

Muller C., Gines J.A., Conzemius M., Meyers R., Lascelles B.D.X. (2018). Evaluation of the effect of signalment and owner-reported impairment level on accelerometer-measured changes in activity in osteoarthritic dogs receiving a non-steroidal anti-inflammatory. Vet. J. (London, England : 1997), 242: 48–52. Search in Google Scholar

Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. (2022). Liposomes: structure, composition, types, and clinical applications. Heliyon, 8. Search in Google Scholar

Okechukwu D.C., Nnamani P.O., Attama A.A., Onugwu A.L., Okore V.C., Onuigbo E.B. (2023). Thermostability and immunostimula-tory activity of cationic liposome-based Newcastle disease virus vaccine. Sci. View J., 4: 308–317. Search in Google Scholar

Olusanya T.O.B., Ahmad R.R.H., Ibegbu D.M., Smith J.R., Elkordy A.A. (2018). Liposomal drug delivery systems and anticancer drugs. Molecules, 23. Search in Google Scholar

Pasarin D., Ghizdareanu A.-I., Enascuta C.E., Matei C.B., Bilbie C., Paraschiv-Palada L., Veres P.-A. (2023). Coating materials to increase the stability of liposomes. Polymers, 15. Search in Google Scholar

Paul S., Majumdar S., Chakraborty M. (2023). Revolutionizing ocular drug delivery: recent advancements in in situ gel technology. Bull Natl. Res. Centre., 47: 1–16. Search in Google Scholar

Petros R.A., DeSimone J.M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Dis., 9: 615–627. Search in Google Scholar

Pham S.H., Choi Y., Choi J. (2020). Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics, 12: 630. Search in Google Scholar

Reader R.C., McCarthy R.J., Schultz K.L., Volturo A.R., Barton B.A., O’Hara M.J., Abelson A.L. (2020). Comparison of liposomal bupivacaine and 0.5% bupivacaine hydrochloride for control of postoperative pain in dogs undergoing tibial plateau leveling osteotomy. J. Am. Vet. Med. Assoc., 256: 1011–1019. Search in Google Scholar

Riaz M., Riaz M., Zhang X., Lin C., Wong K., Chen X., Zhang G., Lu A., Yang Z. (2018). Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Intl. J. Mol. Sci., 19: 195. Search in Google Scholar

Riley L.M., Satchell L., Stilwell L.M., Lenton N.S. (2021). Effect of massage therapy on pain and quality of life in dogs: a cross sectional study. Vet. Rec., 189. Search in Google Scholar

Robson A.-L., Dastoor P.C., Flynn J., Palmer W., Martin A., Smith D.W., Woldu A., Hua S. (2018). Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol., 9. Search in Google Scholar

Ross K., Senapati S., Alley J., Darling R., Goodman J., Jeffer- son M., Uz M., Guo B., Yoon K.-J., Verhoeven D., Kohut M., Mallapragada S., Wannemuehler M., Narasimhan B. (2019). Single dose combination nanovaccine provides protection against influenza A virus in young and aged mice. Biomater. Sci., 7: 809–821. Search in Google Scholar

Rukavina Z., Vanić Ž. (2016). Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics, 8. Search in Google Scholar

Sadozai H., Saeidi D. (2013). Recent developments in liposome-based veterinary therapeutics. ISRN Vet. Sci., 2013: 1–8. Search in Google Scholar

Sainaga Jyothi V.G.S., Bulusu R., Venkata Krishna Rao B., Pranothi M., Banda S., Kumar Bolla P., Kommineni N. (2022). Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: an update. Intl. J. Pharm., 624: 122022. Search in Google Scholar

Sapino S., Chindamo G., Chirio D., Morel S., Peira E., Vercelli C., Gallarate M. (2022). Nanocarriers in veterinary medicine: a challenge for improving osteosarcoma conventional treatments. Nano-materials, 12: 4501. Search in Google Scholar

Saraswat A.L., Maher T.J. (2020). Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J. Drug Deliv. Sci. Technol., 55: 101477. Search in Google Scholar

Saravanakumar K., Hu X., Ali D.M., Wang M.-H. (2019). Emerging strategies in stimuli-responsive nanocarriers as the drug delivery system for enhanced cancer therapy. Curr. Pharm. Design., 25: 2609–2625. Search in Google Scholar

Saravanan P., Sreenivasa B.P., Selvan R.P.T., Basagoudanavar S.H., Hosamani M., Reddy N.D., Nathanielsz J., Derozier C., Venkataramanan R. (2015). Protective immune response to liposome adjuvanted high potency foot-and-mouth disease vaccine in Indian cattle. Vaccine, 33: 670–677. Search in Google Scholar

Schwendener R.A. (2014). Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines, 2: 159–182. Search in Google Scholar

Scott K.A., Qureshi M.H., Cox P.B., Marshall C.M., Bellaire B.C., Wilcox M., Stuart B.A.R., Njardarson J.T. (2020). A structural analysis of the FDA green book-approved veterinary drugs and roles in human medicine. J. Med. Chem., 63: 15449–15482. Search in Google Scholar

Selim A., Lila A., Ishida T. (2017). Liposomal delivery systems: design optimization and current applications. Biol. Pharm. Bull., 40: 1–10. Search in Google Scholar

Sepúlveda C.T., Alemán A., Zapata J.E., Montero M.P., Gómez-Guillén M.C. (2021). Characterization and storage stability of spray dried soy-rapeseed lecithin/trehalose liposomes loaded with a tilapia viscera hydrolysate. Innov. Food Sci. Emerg. Technol., 71: 102708. Search in Google Scholar

Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. (2015). Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 6. Search in Google Scholar

Shilo-Benjamini Y., Cern A., Zilbersheid D., Hod A., Lavy E., Barasch D., Barenholz Y. (2022). A case report of subcutaneously injected liposomal cannabidiol formulation used as a compassion therapy for pain management in a dog. Front. Vet. Sci., 9. Search in Google Scholar

Sogut O., Aydemir Sezer U., Sezer S. (2021). Liposomal delivery systems for herbal extracts. J. Drug Deliv. Sci. Technol., 61. Search in Google Scholar

Soliman W.S., Shaapan R.M., Mohamed L.A., Gayed S.S.R. (2019). Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Vet. J., 9: 190. Search in Google Scholar

Sriwidodo, Umar A.K., Wathoni N., Zothantluanga J.H., Das S., Luck-anagul J.A. (2022). Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon, 8. Search in Google Scholar

Subhan M.A., Yalamarty S.S.K., Filipczak N., Parveen F., Torchilin V.P. (2021). Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med., 11. Search in Google Scholar

Subramanian P., Kurek M.A., Jensen I.-J. (2021). Lipid-based nano-carrier system for the effective delivery of nutraceuticals. Molecules, 26: 5510. Search in Google Scholar

Tatli Seven P., Seven I., Gul Baykalir B., Iflazoglu Mutlu S., Salem A.Z.M. (2018). Nanotechnology and nano-propolis in animal production and health: an overview. Italian J. Animal Sci., 17: 921–930. Search in Google Scholar

Tinkle S., McNeil S.E., Mühlebach S., Bawa R., Borchard G., Barenholz Y. (Chezy), Tamarkin L., Desai N. (2014). Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci., 1313: 35–56. Search in Google Scholar

Torrente C., Vigueras I., Manzanilla E.G., Villaverde C., Fresno L., Carvajal B., Fiñana M., Costa-Farré C. (2017). Prevalence of and risk factors for intraoperative gastroesophageal reflux and postanesthetic vomiting and diarrhea in dogs undergoing general anesthesia. J. Vet. Emerg. Critical Care, 27: 397–408. Search in Google Scholar

Tseu G.Y.W., Kamaruzaman K.A. (2023). A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules, 28. Search in Google Scholar

Turner H., Séguin B., Worley D.R., Ehrhart N.P., Lafferty M.H., Withrow S.J., Selmic L.E. (2017). Prognosis for dogs with stage III osteosarcoma following treatment with amputation and chemo-therapy with and without metastasectomy. J. Am. Vet. Med. Assoc., 251: 1293–1305. Search in Google Scholar

Uhl P., Bajraktari-Sylejmani G., Witzigmann D., Bay C., Zimmermann S., Burhenne J., Weiss J., Haefeli W.E., Sauter M. (2023). A nanocarrier approach for oral peptide delivery: evaluation of cell-penetrating-peptide-modified liposomal formulations in dogs. Adv. Therap., 6. Search in Google Scholar

van der Koog L., Gandek T.B., Nagelkerke A. (2022). Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv. Healthcare Mater., 11. Search in Google Scholar

van der Meel R., Vehmeijer L.J.C., Kok R.J., Storm G., van Gaal E.V.B. (2013). Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev., 65: 1284–1298. Search in Google Scholar

Ventola C.L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. P & T Peer-rev. J. Formulary Manag., 42: 742–755. Search in Google Scholar

Verma J., Warsame C., Seenivasagam R.K., Katiyar N.K., Aleem E., Goel S. (2023). Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev., 42: 601–627. Search in Google Scholar

Wahab M.S., Hair-Bejo M., Omar A.R., Ideris A. (2017). Hatchery vaccination using liposomes as vaccine delivery against infectious bursal disease in broiler chickens. J. Animal Vet. Adv., 16: 122–128. Search in Google Scholar

Wang Y., Grainger D.W. (2022). Regulatory considerations specific to liposome drug development as complex drug products. Front. Drug Deliv., 2. Search in Google Scholar

Withers S.S., York D., Johnson E., Al-Nadaf S., Skorupski K.A., Rodriguez C.O., Burton J.H., Guerrero T., Sein K., Wittenburg L., Rebhun R.B. (2018). In vitro and in vivo activity of liposome-encapsulated curcumin for naturally occurring canine cancers. Vet. Comp. Oncol., 16: 571–579. Search in Google Scholar

Yan W., Leung S.S., To K.K. (2020). Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine, 15: 303–318. Search in Google Scholar

Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J., Shao A. (2020). Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 7. Search in Google Scholar

Youssef F.S., El-Banna H.A., Elzorba H.Y., Galal A.M. (2019). Application of some nanoparticles in the field of veterinary medicine. Intl. J. Vet. Sci. Med., 7: 78–93. Search in Google Scholar

Zabielska-Koczywąs K., Lechowski R. (2017). The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules, 22: 2167. Search in Google Scholar

Zabielska-Koczywąs K., Wojtalewicz A., Lechowski R. (2017). Current knowledge on feline injection-site sarcoma treatment. Acta Vet. Scand., 59: 47. Search in Google Scholar

Zaheer T., Pal K., Zaheer I. (2021). Topical review on nano-vaccinology: biochemical promises and key challenges. Process Biochem., 100: 237–244. Search in Google Scholar

Zhu M., Wang R., Nie G. (2014). Applications of nanomaterials as vaccine adjuvants. Hum. Vaccines Immunother., 10: 2761–2774. Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine