[Abbas H., Soliman W., Elgendy M.Y., Youins N.A., Abu-Elala N.M. (2022). Insight on the potential microbial causes of summer mortality syndrome in the cultured Nile tilapia (Oreochromis niloticus). Egypt J. Aquat. Biol. Fisher., 26.]Search in Google Scholar
[Abd El Hakim Y., Neamat-Allah β-glucan A.N., Baeshen M., Ali H.A. (2019). Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish Shellfish. Immunol., 94: 427–433.]Search in Google Scholar
[Abdel-Daim M.M., Eissa I.A., Abdeen A., Abdel-Latif H.M., Ismail M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ. Toxicol. Pharmacol., 69: 44–50.]Search in Google Scholar
[Abdel-Tawwab M., Hagras A.E., Elbaghdady H.A.M., Monier M.N. (2014). Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia, Oreochromis niloticus. J. Appl. Aquacult., 26: 340–355.]Search in Google Scholar
[Abdelhamid F.M., Elshopakey G.E., Aziza A.E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immunol., 96: 213–222.]Search in Google Scholar
[Abdelrhman A.M., Ashour M., Al-Zahaby M.A., Sharawy Z.Z., Nazmi H. (2022). Effect of polysaccharides derived from brown macroalgae Sargassum dentifolium on growth performance, serum biochemical, digestive histology and enzyme activity of hybrid red tilapia. Aquacult. Rep., 25: 101212.]Search in Google Scholar
[Abo-Taleb H.A., Zeina F.A., Ashour M., Mabrouk M.M., Sallam E.A. (2020). Isolation and cultivation of the freshwater amphipod Gammarus pulex (Linnaeus, 1758), with an evaluation of its chemical and nutritional content. Egypt J. Aquat. Biol. Fish., 24: 69–82.]Search in Google Scholar
[Aboseif A.M., Flefil N.S., Taha M.K., Tahoun U.M., Mola H.R.A. (2022). Influence of dietary C: N: P ratios on Nile tilapia Oreochromis niloticus growth performance and formation of water biotic communities within a biofloc system containment. Aquacult. Rep., 24: 101136.]Search in Google Scholar
[AbouShabana N., AbdelKader R., Abdel-RahmanS., Abdel-Gawad H., Abdel-Galil A. (2018). Enhancement of broodstock health and maternal immunity in gilthead seabream (Sparus aurata L.) using ExcelMOS®. Fish Physiol. Biochemist., 44: 1241–1251.]Search in Google Scholar
[Adel M., Dadar M., Khajavi S.H., Pourgholam R., Karimí B. (2017). Hematological, biochemical and histopathological changes in Caspian brown trout (Salmo trutta caspius Kessler, 1877) following exposure to sublethal concentrations of chlorpyrifos. Tox Revi., 36: 73–79.]Search in Google Scholar
[Ahmadifar E., Akrami R., Razeghi Mansour M., Keramat Amirkolaie A. (2015). Effect of dietary supplementation of mannan oligosaccharide on growth performance and salinity tolerance in kutum, Rutilus kutum (Kamensky, 1901) fry. J. Appl. Ichthyol., 31: 12452.]Search in Google Scholar
[Ahmadifar E., Moghadam M.S., Dawood M.O., Hoseinifar S.H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) finger-lings. Fish Shellfish. Immunol., 94: 916–923.]Search in Google Scholar
[Ahmadifar E., Mohammadzadeh S., Kalhor N., Yousefi M., Moghadam M.S., Naraballobh N., Ahmadifar M., Hoseinifar S.H., Van Doan H. (2022). Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aquaculture, 558: 738372.]Search in Google Scholar
[Ahmed M.N., Flefil S.N., Tayel I.S., Mahmoud A.S., Soliman A.-G. (2019). Biological treatment of ammonia using biofloc system for Oreochromis niloticus fish. Egypt J. Aquat. Biol. Fisher., 23: 639–657.]Search in Google Scholar
[Ai Q., Mai K., Zhang L., Tan B., Zhang W. (2007). Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish. Immunol., 22: 394–402.]Search in Google Scholar
[Alprol A.E., Heneash A.M.M., Ashour M., Abualnaja K.M., Alhashmialameer D. (2021). Potential applications of Arthrospira platensis lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on marine rotifer (Brachionus plicatilis). Materials, 14.]Search in Google Scholar
[Amphan S., Unajak S., Printrakoon C., Areechon N. (2019). Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare. Fish Shellfish. Immunol., 87: 120–128.]Search in Google Scholar
[Anderson D., Siwicki A. (1995). Basic hematology and serology for fish health programs. Fish Health Section, Asian Fisheries Society, pp. 185–202.]Search in Google Scholar
[AOAC (2003). Official methods of analysis of the Association of Official Analytical Chemists. The Association.]Search in Google Scholar
[Aoe S., Ichinose Y., Kohyama N., Komae K., Takahashi A. (2017). Effects of high β-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 42: 1–6.]Search in Google Scholar
[APHA (1998). Standard methods for the examination of water and waste water, 19th edition. APHA, Washington DC, USASS. Apino R.M., Emplonuevo R.M., Vera Cruz E.M. (2022). Stress responses of red tilapia (Oreochromis spp.) exposed to blue and red-light emitting diode (Led). Egypt Acade J. Biol. Sci., B. Zool., 14: 159–167.]Search in Google Scholar
[Asadi M., Mirvaghefei A., Nematollahi M., Banaee M., Ahmadi K. (2012). Effects of watercress (Nasturtium nasturtium) extract on selected immunological parameters of rainbow trout (Oncorhynchus mykiss). Open Vet. J., 2: 32–39.]Search in Google Scholar
[Awad E., Awaad A. (2017). Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish. Immunol., 67: 40–54.]Search in Google Scholar
[Barros M.M., Falcon D.R., Orsi R.O., Pezzato L.E., Fernandes Junior A.C. (2015). Immunomodulatory effects of dietary β-glucan and vitamin C in Nile tilapia, Oreochromis niloticus L., subjected to cold-induced stress or bacterial challenge. J. World Aquacult. Soc., 46: 363–380.]Search in Google Scholar
[Bligh E.G., Dyer W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.]Search in Google Scholar
[Brett J. (1973). Energy expenditure of sockeye salmon, Oncorhynchus nerka, during sustained performance. J. Fisher Board Canada, 30: 1799–1809.]Search in Google Scholar
[Cai W.-Q., Li S.-F., Ma J.-Y. (2004). Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia× male blue tilapia) to Aeromonas sobria. Aquaculture, 229: 79–87.]Search in Google Scholar
[Ching J.J., Shuib A.S., Abdul Majid N., Mohd Taufek N. (2021). Immunomodulatory activity of β-glucans in fish: Relationship between β-glucan administration parameters and immune response induced. Aquacult. Res., 52: 1824–1845.]Search in Google Scholar
[Cuesta A., Vargas-Chacoff L., García-López A., Arjona F., Martínez-Rodríguez G. (2007). Effect of sex-steroid hormones, testosterone and estradiol, on humoral immune parameters of gilthead seabream. Fish Shellfish. Immunol., 23: 693–700.]Search in Google Scholar
[Davis A., Maney D., Maerz J. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol., 22: 760–772.]Search in Google Scholar
[Dawood M.A., Eweedah N.M., Elbialy Z.I., Abdelhamid A.I. (2020 a). Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J. Therm. Biol., 88: 102500.]Search in Google Scholar
[Dawood M.A., Abdel-Razik N.I., Gewaily M.S., Sewilam H., Paray B.A. (2020 b). β-Glucan improved the immunity, hepato-renal, and histopathology disorders induced by chlorpyrifos in Nile tilapia. Aquacult. Rep., 18: 100549.]Search in Google Scholar
[Del Rio-Zaragoza O., Fajer-Ávila E., Almazán-Rueda P. (2011). Influence of β-glucan on innate immunity and resistance of Lutjanus guttatus to an experimental infection of dactylogyrid monogeneans. Parasite Immunol., 33: 483–494.]Search in Google Scholar
[Demers N.E., Bayne C.J. (1997). The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Develop Comp. Immunol., 21: 363–373.]Search in Google Scholar
[Do Huu H., Sang H.M., Thuy N.T.T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish Shellfish. Immunol., 54: 402–410.]Search in Google Scholar
[Dou X., Huang H., Li, Y., Deng J., Tan B. (2023). Effects of dietary β-glucan on growth rate, antioxidant status, immune response, and resistance against Aeromonas hydrophila in genetic improvement of farmed tilapia (GIFT, Oreochromis niloticus). Aquacult. Rep., 29: 101480.]Search in Google Scholar
[Duan Y., Zhang Y., Don H., Wang Y., Zhang J. (2017). Effect of the dietary probiotic Clostridium butyricum on growth, intestine anti-oxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J. Therm. Biol., 66: 93–100.]Search in Google Scholar
[Duncan D.P. (1955). Multiple range and multiple F test. Biometrics, 11: 1–42.]Search in Google Scholar
[Elmowalid G.A., Ghonimi W.A., Abd Allah H.M., Abdallah H., El-Murr A. (2023). β-1,3-glucan improved the health and immunity of juvenile African catfish (Clarias gariepinus) and neutralized the histological changes caused by lead and fipronil pollutants. BMC Vet. Res., 19: 1–13.]Search in Google Scholar
[Elsheshtawy A., Yehia N., Elkemary M., Soliman H. (2019). Investigation of Nile tilapia summer mortality in Kafr El-Sheikh governorate, Egypt. Gen. Aquat. Org., 3: 17–25.]Search in Google Scholar
[Fath El-Bab A.F., Majrashi K.A., Sheikh H.M., Shafi M.E., El-Ratel I.T. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: Synergistic impacts on performance, immune responses, redox status and expression of some related genes. Front. Vet. Sci., 9: 1011715.]Search in Google Scholar
[Fazio F., Saoca C., Costa G., Zumbo A., Piccione G. (2019). Flow cytometry and automatic blood cell analysis in striped bass Morone saxatilis (Walbaum, 1792): A new hematological approach. Aquaculture, 513: 734398.]Search in Google Scholar
[Femi-Oloye O.P., Owoloye A., Olatunji-Ojo A.M., Abiodun A.C., Adewumi B. (2020). Effects of commonly used food additives on haematological parameters of Wistar rats. Heliyon, 6.]Search in Google Scholar
[Fuchs V., Schmidt J., Slater M., Zentek J., Buck B. (2015). The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture, 437: 243–251.]Search in Google Scholar
[Glasser L., Fiederlein R.L. (1990). The effect of various cell separation procedures on assays of neutrophil function: a critical appraisal. Am. J. Clin. Pathol., 93: 662–669.]Search in Google Scholar
[Goda A.M.-S., Aboseif A.M., Mohammedy E.Y., Taha M.K., Mansour A.A. (2023). Earthen pond-based floating beds for rice-fish co-culture as a novel concept for climate adaptation, water efficiency improvement, nitrogen and phosphorus management. Aquaculture, 740215.]Search in Google Scholar
[Helal M.A., Abdelaty S.B., Elokaby A.M., Abou Shabana M., Essa A.N.M. (2020). Improved technological innovation and management aspects in the Nile tilapia, Oreochromis niloticus, seed production. Egypt J. Aquat. Biol. Fisher., 24: 609–622.]Search in Google Scholar
[Hong-Bo L., Ma Q., Zhang M.-L., Limbu S.M., Chen L.-Q. (2018). The comparisons in protective mechanisms and efficiencies among dietary α-lipoic acid, β-glucan and L-carnitine on Nile tilapia infected by Aeromonas hydrophila. Fish Shellfish. Immunol., 86: 785–793.]Search in Google Scholar
[Hoseinifar S.H., Mirvaghefi A., Merrifield D.L. (2011). The effects of dietary inactive brewer’s yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut micro-biota of juvenile beluga (Huso huso). Aquaculture, 318: 90–94.]Search in Google Scholar
[Hoseinifar S.H., Roosta Z., Hajimoradloo A.,Vakili F. (2015). The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish Shellfish. Immunol., 42: 533–538.]Search in Google Scholar
[Huang C.-W., Chien Y.-S., Chen Y.-J., Ajuwon K.M., Mersmann H.M. (2016). Role of n-3 polyunsaturated fatty acids in ameliorating the obesity-induced metabolic syndrome in animal models and humans. Int. J. Mol. Sci., 17: 1689.]Search in Google Scholar
[Ji L., Sun G., Li J., Wang Y., Du Y. (2017). Effect of dietary β-glucan on growth, survival and regulation of immune processes in rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida. Fish Shellfish. Immunol., 64: 56–67.]Search in Google Scholar
[Jung-Schroers V., Harris S., Adamek M., Jung A., Steinhagen D. (2019). More is not always better-the influence of different concentrations of dietary β-glucan on the intestinal microbiota of tin-foil barb (Barbonymus schwanenfeldii). Bull. Europ. Assoc. Fish Pathol., 39: 122–132.]Search in Google Scholar
[Kamilya D., Maiti T., Joardar S., Mal B. (2006). Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). J. Fish Dis., 29: 331–337.]Search in Google Scholar
[Khanjani M.H., Sharifinia M., Ghaedi G. (2021). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.]Search in Google Scholar
[Kiron V., Kulkarni A., Dahle D., Lokesh J., Elvebo O. (2016). Recognition of purified beta 1, 3/1, 6 glucan and molecular signalling in the intestine of Atlantic salmon. Dev. Comp. Immunol., 56: 57–66.]Search in Google Scholar
[Koch J.F.A., de Oliveira C.A.F., Zanuzzo F.S. (2021). Dietary β-glucan (MacroGard®) improves innate immune responses and disease resistance in Nile tilapia regardless of the administration period. Fish Shellfish. Immunol., 112: 56–63.]Search in Google Scholar
[Lauriano E., Pergolizzi S., Aragona M., Montalbano G., Guerrera M. (2019). Intestinal immunity of dogfish Scyliorhinus canicula spiral valve: A histochemical, immunohistochemical and confocal study. Fish Shellfish. Immunol., 87: 490–498.]Search in Google Scholar
[Lee H.C., Yu W.T., Guo Y.R., Huang S.Y. (2017). β-Glucan, but not Lactobacillus plantarum P-8, inhibits lipid accumulation through selected lipid metabolic enzymes in obese rats. J. Food Biochem., 41: e12336.]Search in Google Scholar
[Lin S., Pan Y., Luo L., Luo L. (2011). Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish. Immunol., 31: 788–794.]Search in Google Scholar
[López N., Cuzon G., Gaxiola G., Taboada G., Valenzuela M. (2003). Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture, 224: 223–243.]Search in Google Scholar
[Lu K.-L., Xu W.-N., Li J.-Y., Li X.-F., Huang G.-Q. (2013). Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish. Sci., 79: 661–671.]Search in Google Scholar
[Mabrouk M.M., Ashour M., Labena A., Zaki M.A.A., Abdelhamid A.F. (2022). Nanoparticles of Arthrospira platensis improves growth, antioxidative and immunological responses of Nile tilapia (Oreochromis niloticus) and its resistance to Aeromonas hydrophila. Aquacult. Res., 53: 125–135.]Search in Google Scholar
[Mahmoud H., Dawood M.A., Assar M.H., Ijiri D., Ohtsuka A. (2019). Dietary Moringa oleifera improves growth performance, oxidative status, and immune related gene expression in broilers under normal and high temperature conditions. J. Therm. Biol., 82: 157–163.]Search in Google Scholar
[Medagoda N., Chotikachinda R., Hasanthi M., Lee K.-J. (2023). Dietary supplementation of a mixture of nucleotides, β-glucan and vitamins C and E improved the growth and health performance of olive flounder, Paralichthys olivaceus. Fishes, 8: 302.]Search in Google Scholar
[Medri V., Pereira G., Leonhardt J. (2000). Growth of Nile tilapia Oreochromis niloticus fed with different levels of alcohol yeast. Rev. Bras. Biol., 60: 113–121.]Search in Google Scholar
[Mills S., Spurlock M., Smith D. (2003). β-Adrenergic receptor sub-types that mediate ractopamine stimulation of lipolysis. J. Anim. Sci., 81: 662–668.]Search in Google Scholar
[Mohebbi A., Nematollahi A., Dorcheh E.E., Asad F.G. (2012). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 43: 1184–1193.]Search in Google Scholar
[Munir M.B., Hashim R., Manaf M.S.A., Nor S.A.M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilisation, and body indices of snakehead (Channa striata) finger-lings. Trop. Life Sci. Res., 27: 111.]Search in Google Scholar
[Nawaz A., Javaid A.B., Irshad S., Hoseinifar S.H., Xiong H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish. Immunol., 76: 272–278.]Search in Google Scholar
[Owatari M.S., da Silva L.R., Ferreira G.B., Rodhermel J.C.B., de Andrade J.I.A. (2022). Body yield, growth performance, and haematological evaluation of Nile tilapia fed a diet supplemented with Saccharomyces cerevisiae. Anim. Feed Sci. Technol., 293: 115453.]Search in Google Scholar
[Petit J., Wiegertjes G.F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol., 64: 93–102.]Search in Google Scholar
[Pilarski F., de Oliveira C.A.F., de Souza F.P.B.D., Zanuzzo F.S. (2017). Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish. Immunol., 70: 25–29.]Search in Google Scholar
[Racicot J., Gaudet M., Leray C. (1975). Blood and liver enzymes in rainbow trout (Salmo gairdneri Rich.) with emphasis on their diagnostic use: Study of CCl4 toxicity and a case of Aeromonas infection. J. Fish Biol., 7: 825–835.]Search in Google Scholar
[Ran C., Huang L., Liu Z., Xu L., Yang Y. (2015). A comparison of the beneficial effects of live and heat-inactivated baker’s yeast on Nile tilapia: suggestions on the role and function of the secretory metabolites released from the yeast. Plos One, 10:e0145448.]Search in Google Scholar
[Reitman S., Frankel S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28: 56–63.]Search in Google Scholar
[Ringø E., Olsen R., Gifstad T., Dalmo R., Amlund H., Hemre G.-I., Bakke A.M. (2010). Prebiotics in aquaculture: a review. Aquacult. Nutr., 16: 117–136.]Search in Google Scholar
[Robbins K.R., Norton H.W., Baker D.H. (1979). Estimation of nutrient requirements from growth data. J. Nutr., 109: 1710–1714.]Search in Google Scholar
[Rochman C.M., Hoh E., Kurobe T., Teh S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep., 3: 1–7.]Search in Google Scholar
[Rodrigues M.V., Zanuzzo F.S., Koch J.F.A., de Oliveira C.A.F., Sima P. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules, 25: 5378.]Search in Google Scholar
[Rufchaie R., Hoseinifar S.H. (2014). Effects of dietary commercial yeast glucan on innate immune response, hematological parameters, intestinal microbiota and growth performance of white fish (Rutilus kutum) fry. Croatian J. Fisher: Ribarstvo, 72: 156–163.]Search in Google Scholar
[Sarhadi I., Alizadeh E., Ahmadifar E., Adineh H., Dawood M.O. (2020). Skin mucosal, serum immunity and antioxidant capacity of common carp (Cyprinus carpio) fed artemisia (Artemisia annua). Ann. Anim. Sci., 20: 1011–1027.]Search in Google Scholar
[Saurabh S., Sahoo P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res., 39: 223–239.]Search in Google Scholar
[Sealey W., Barrows F., Hang A., Johansen K., Overturf K. (2008). Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim. Feed Sci. Technol., 141: 115–128.]Search in Google Scholar
[Selim K.M., Reda R.M. (2015). Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile tilapia. North Am. J. Aquacult., 77: 22–30.]Search in Google Scholar
[Sharawy Z.Z., Ashour M., Labena A. (2022). Effects of dietary Arthrospira platensis nanoparticles on growth performance, feed utilization, and growth-related gene expression of Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 551: 737905.]Search in Google Scholar
[Shelby R.A., Lim C., Yildirim-Aksoy M., Welker T.L., Klesius P.H. (2009). Effects of yeast oligosaccharide diet supplements on growth and disease resistance in juvenile Nile tilapia, Oreochromis niloticus. J. Appl. Aquacult., 21: 61–71.]Search in Google Scholar
[Suvarna K.S., Layton C., Bancroft J.D. (2018). Bancroft’s theory and practice of histological techniques. Elsevier.]Search in Google Scholar
[Swain B., Campodonico V.A., Curtiss III R. (2023). Recombinant attenuated Edwardsiella piscicida vaccine displaying regulated lysis to confer biological containment and protect catfish against edwardsiellosis. Vaccines, 11: 1470.]Search in Google Scholar
[Tian J., Yang Y., Du X., Xu W., Zhu B. (2023). Effects of dietary soluble β-1,3-glucan on the growth performance, antioxidant status, and immune response of the river prawn (Macrobrachium nipponense). Fish Shellfish. Immunol., 138: 108848.]Search in Google Scholar
[Uribe C., Folch H., Enríquez R., Moran G. (2011). Innate and adaptive immunity in teleost fish: a review. Vet. Med., 56: 486–503.]Search in Google Scholar
[Van Doan H., Hoseinifar S.H., Sringarm K., Jaturasitha S., Khamlor T. (2019). Effects of elephant’s foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Fish Shellfish. Immunol., 93: 328–335.]Search in Google Scholar
[Wang Y. (2011). Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquacult. Nutr., 17: e372–e378.]Search in Google Scholar
[Welker T.L., Lim C., Yildirim-Aksoy M., Shelby R., Klesius P.H. (2007). Immune response and resistance to stress and Edwardsi-ella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J. World Aquacult. Soc., 38: 24–35.]Search in Google Scholar
[Welker T.L., Lim C., Yildirim-Aksoy M., Klesius P.H. (2012). Use of diet crossover to determine the effects of β-glucan supplementation on immunity and growth of Nile Tilapia, Oreochromis niloticus. J. World Aquacult. Soc., 43: 335–348.]Search in Google Scholar
[Whittington R., Lim C., Klesius P.H. (2005). Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture, 248: 217–225.]Search in Google Scholar
[Witeska M., Kondera E., Ługowska K., Bojarski B. (2022). Hematological methods in fish – not only for beginners. Aquaculture, 547: 737498.]Search in Google Scholar
[Xu C., Suo Y., Wang X., Qin J.G., Chen L. (2020). Recovery from hypersaline-stress-Induced immunity damage and intestinal-microbiota changes through dietary β-glucan supplementation in Nile tilapia (Oreochromis niloticus). Animals, 10: 2243.]Search in Google Scholar
[Yamamoto F.Y., Sutili F.J., Hume M., Gatlin III D.M. (2018). The effect of β-1,3-glucan derived from Euglena gracilis (Algamune™) on the innate immunological responses of Nile tilapia (Oreochromis niloticus L.). J. Fish Dis., 41: 1579–1588.]Search in Google Scholar
[Yano T. (1992). Assay of hemolytic complement activity. Tech. Fish Immunol., 131–141.]Search in Google Scholar
[Zar J. (1984). Biostatstical analysis, 2nd ed Prentice-Hall. Inc., Englewood Cliffs, NJ.]Search in Google Scholar