[Abareethan M., Amsath A. (2015). Characterization and evaluation of probiotic fish feed. Int. J. Pure Appl. Zool., 3: 148–153.]Search in Google Scholar
[Amiin M.K., Lahay A.F., Putriani R.B., Reza M., Putri S.M.E., Sumon M.A.A., Jamal M.T., Santanumurti M.B. (2023). The role of probiotics in vannamei shrimp aquaculture performance – A review. Vet. World, 16: 638–649.]Search in Google Scholar
[AOAC (2000). Association of Official Analytical Chemists. Coffee and tea. Official Methods of Analysis (17th ed.). Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., Gómez-Llorente C., Gil A. (2012). Probiotic mechanisms of action. Ann. Nutr. Metab., 61: 160–174.]Search in Google Scholar
[Borlongan I.G. (1990). Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture, 89: 315–325.]Search in Google Scholar
[Claiborne A. (1985). Catalase activity. In: CRC Handbook of Methods for Oxygen Radical Research, Greenwald R.A. (ed). CRC Press, Boca Raton, pp. 283–284.]Search in Google Scholar
[Dash G., Raman R.P., Prasad K.P., Marappan M., Pradeep M.A., Sen S. (2014). Evaluation of Lactobacillus plantarum as a water additive on host associated microflora, growth, feed efficiency and immune response of giant freshwater prawn, Macrobrachium rosenbergii (de man, 1879). Aquac. Res., 47: 804–818.]Search in Google Scholar
[Dash G., Raman R.P., Pani Prasad K., Makesh M., Pradeep M.A., Sen S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol., 43: 167–174.]Search in Google Scholar
[Dawood M.A., Koshio S., Ishikawa M., Yokoyama S. (2015 a). Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of amberjack, Seriola dumerili juveniles. Biomed. Res. Int., 2015: 1–11.]Search in Google Scholar
[Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama, S. (2015 b). Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and beta-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol., 45: 33–42.]Search in Google Scholar
[Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2015 c). Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture, 442: 29–36.]Search in Google Scholar
[Dawood M.A.O., Koshio S., Abdel-Daim M.M., Van Doan H. (2019). Probiotic application for sustainable aquaculture. Rev. Aquac., 11: 907–924.]Search in Google Scholar
[Draper H.H., Hadley M. (1990). Malondialdehyde determination as index of lipid peroxidation. In: Methods in Enzymology. Elsevier, 186: 421–431.]Search in Google Scholar
[Du Y., Xu W., Wu T., Li H., Hu X. Chen J. (2022). Enhancement of growth, survival, immunity and disease resistance in Litopenaeus vannamei, by the probiotic, Lactobacillus plantarum Ep-M17. Fish Shellfish Immunol., 129: 36–51.]Search in Google Scholar
[Duan Y., Zhang Y., Dong H., Wang Y., Zheng X. Zhang, J. (2017). Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol., 65: 25–33.]Search in Google Scholar
[El-Raghi A.A. Hassan M.A.E., Hashem N.M., Abdelnour S.A. (2023). Struggling thermal stress impacts on growth performance and health status of newly weaned rabbits using nanoemulsion of Origanum majorana considering the economic efficiency of supplementation. Animals, 13: 1772.]Search in Google Scholar
[El-Raghi A.A., El-Mezayen M.M., Areda H.A. (2024). Potential effects of probiotics (immunobacteryne; IMB) on growth performance, feed efficacy, blood biochemical, redox balance, non-specific immunity and heat-shock protein expression of Nile tilapia (Oreochromis niloticus) fingerlings. J. Anim. Physiol. Anim. Nutr., 108: 691–699.]Search in Google Scholar
[Eslamloo K., Falahatkar B., Yokoyama S. (2012). Effects of dietary bovine lactoferrin on growth, physiological performance, iron metabolism and non-specific immune responses of Siberian sturgeon Acipenser baeri. Fish Shellfish Immunol., 32: 976–985.]Search in Google Scholar
[Essawi W. M., El-Raghi A. A., Ali F., Nassan M. A., Neamat-Allah A. N. F., Hassan M. A. E. (2021). The association of the potential risk factors and nutrition elements with abortion and calving rates of Egyptian buffaloes (Bubalus bubalis). Animals: An Open Access Journal from MDPI, 11: 2043.]Search in Google Scholar
[Fath El-Bab A.F., Majrashi K.A., Sheikh H.M., Shafi M.E., El-Ratel I.T., Neamat-Allah A.N.F., El-Raghi A.A., Elazem A.Y.A., Abd-Elghany M.F., Abdelnour S.A., Abduh M.S., Jaremko M., Naiel M.A.E. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: Synergistic impacts on performance, immune responses, redox status and expression of some related genes. Front. Vet. Sci., 9: 1011715. ]Search in Google Scholar
[Femi-Oloye O.P., Owoloye A., Olatunji-Ojo A.M., Abiodun A.C., Adewumi B., Ibitoye B.O., Oloye F.F., Izegaegbe J.I., Adebayo T.M., Adedoja A.J., Oginni O.P., Gbore F.A., Akinwumi F.O. (2020). Effects of commonly used food additives on haematological parameters of Wistar rats. Heliyon, 6: e05221.]Search in Google Scholar
[Ghaffarizadeh A., Sotoudeh E., Mozanzadeh M.T., Sanati A.M., Ghasemi A. (2022). Supplementing dietary selenium nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquacult. Rep., 25: 101215.]Search in Google Scholar
[Hai N.V. (2015). The use of probiotics in aquaculture. J. Appl. Micro-biol., 119: 917–935.]Search in Google Scholar
[Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquacult., 29: 198–217.]Search in Google Scholar
[Jeong J.-J., Park H.J., Cha M.G., Park E., Won S.-M., Ganesan R., Gupta H., Gebru Y.A., Sharma S.P., Lee S.B. (2022). The Lacto-bacillus as a probiotic: Focusing on liver diseases. Microorganisms, 10: 288.]Search in Google Scholar
[Jiang C.K. (1982). Manual of Enzyme Activity Measuring. Science and Technology Press, Shanghai.]Search in Google Scholar
[Jin Z.L. (1995). The Evaluation Principle and Method of Functional Food. Beijing Publishers, Beijing.]Search in Google Scholar
[Kewcharoen W., Srisapoome P. (2019) Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol., 94: 175–189.]Search in Google Scholar
[Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2024). Broodstock and seed production in biofloc technology (BFT): An updated review focused on fish and penaeid shrimp. Aquaculture, 579: 740278.]Search in Google Scholar
[Kongnum K., Hongpattarakere T. (2012). Effect of Lactobacillus plan-tarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish Shellfish Immunol., 32: 170–177.]Search in Google Scholar
[Lee T., Kim W., Park J., Lee G. (2022). Hemolysis-inspired, highly sensitive, label-free IgM detection using erythrocyte membrane-functionalized nanomechanical resonators. Materials, 15: 7738.]Search in Google Scholar
[Li J., Xu Y., Jin L., Li X. (2014). Effects of a probiotic mixture (Bacillus subtilis, YB-1 and Bacillus cereus, YB-2) on disease resistance and non-specific immunity of sea cucumber (Apostichopus japonicus, Selenka). Aquacult. Res., 46: 3008–3019.]Search in Google Scholar
[Maeda M., Shibata A., Biswas G., Korenaga H., Kono T., Itami T. (2014). Isolation of lactic acid bacteria from kuruma shrimp (Marsupenaeus japonicus) intestine and assessment of immunomodulatory role of a selected strain as probiotic. Mar. Biotech. (NY), 16: 181–192.]Search in Google Scholar
[Marklund S., Marklund G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469–474.]Search in Google Scholar
[Martinez-Cordova L.R., Campaña-Torres A., Porchas-Cornejo M.A. (2002). Promotion and contribution of biota in low water exchange ponds farming blue shrimp Litopenaeus stylirostris (Stimpson). Aquacult. Res., 33: 27–32.]Search in Google Scholar
[Mercier L., Palacios E., Campa-Cordova A.I., Tovar-Ramirez D., Hernández-Herrera R., Racotta I.S. (2006). Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress. Aquaculture, 258: 633–640.]Search in Google Scholar
[Michaud E., Mastrandrea C., Rochereau N., Paul S. (2020). Human secretory IgM: An elusive player in mucosal immunity. Trends Immunol., 41: 141–156.]Search in Google Scholar
[Naiel M.A.E., Khames M.K., Abdel-Razek N., Gharib A.A., El-Tara-bily K.A. (2021). The dietary administration of miswak leaf powder promotes performance, antioxidant, immune activity, and resistance against infectious diseases on Nile tilapia (Oreochromis niloticus). Aquacult. Rep., 20: 100707.]Search in Google Scholar
[Petro-Sakuma C., Celino-Brady F.T., Breves J.P., Seale A.P. (2020). Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol., 292: 113464.]Search in Google Scholar
[Salaah S.M., El-Gaar D.M., Gaber H.S. (2022). Potential effects of dietary chitosan against lead-induced innate immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Res., 48: 123–129.]Search in Google Scholar
[SAS Institute (2012). Inc. SAS/STAT Statistics user’s guide, Statistical Analytical System (5th rev ed.). SAS Institute Inc.]Search in Google Scholar
[Talpur A.D., Ikhwanuddin M., Abdullah M.D.D., Bolong A.M.A. (2013). Indigenous Lactobacillus plantarum as probiotic for larviculture of blue swimming crab, Portunus pelagicus (Linnaeus, 1758): effects on survival, digestive enzyme activities and water quality. Aquaculture, 416–417: 173–178.]Search in Google Scholar
[Tang Z., Sun H., Chen T., Lin Z., Jiang H., Zhou X., Shi C., Pan H., Chang O., Ren P., Yu J., Li X., Xu J., Huang Y., Yu X. (2017). Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. Fish Shellfish Immunol., 64: 287–296.]Search in Google Scholar
[Tung H.T., Koshio S., Traifalgar R.F., Ishikawa M., Yokoyama S. (2010). Effects of dietary heat-killed Lactobacillus plantarum on larval and post-larval kuruma shrimp, Marsupenaeus japonicas Bate. J. World Aquacult. Soc., 41: 16–27.]Search in Google Scholar
[Wang Y., Li Z., Li J., Duan Y.F., Niu J., Wang J. (2015). Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite. Fish Shellfish Immunol., 43: 337–345.]Search in Google Scholar
[Wang L., Ge C., Wang J., Dai J., Zhang P., Li Y. (2017). Effects of different combinations of Bacillus on immunity and antioxidant activities in common carp. Aquacult. Int., 25: 2091–2099. Whang I., Lee Y., Lee S., Oh M.J., Jung S.J., Choi C.Y., Lee W.S.,]Search in Google Scholar
[Kim H.S., Kim S.J., Lee J. (2011). Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein. Fish Shellfish Immunol., 30: 532–542.]Search in Google Scholar
[Worthington V. (1993). Worthington Enzyme Manual. Enzymes and Related Biochemicals Worthington Chemical, New Jersey, US.]Search in Google Scholar
[Yan J., Charles J.F. (2018). Gut microbiota and IGF-1. Calcif. Tissue Int., 102: 406–414.]Search in Google Scholar
[Yang S.P., Wu Z.H., Jian J.C., Zhang X.Z. (2010). Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture, 309: 62–65.]Search in Google Scholar
[Yokv B., Bademkiran S., Cakir U.D. (2007). Total antioxidant capacity and oxidative stress in dairy cattle and their associations with dystocia. Med. Weter., 63: 167–170.]Search in Google Scholar
[Yousuf S., Tyagi A., Singh R. (2022). Probiotic supplementation as an emerging alternative to chemical therapeutics in finfish aquaculture: A review. Prob. Antimicrob. Prot., 15: 1–18.]Search in Google Scholar
[Zheng X., Yafei D., Hongbiao D., Jiasong Z. (2018). Effects of dietary Lactobacillus plantarum on growth performance, digestive enzymes and gut morphology of Litopenaeus vannamei. Prob. Antimicrob. Prot., 10: 504–510.]Search in Google Scholar