[
Al-Amoudi M.M. (1987). The effects of high salt diet on the direct transfer of the Oreochromis mossambicus, O. spilurus, O. niloticus hybrids to sea water. Aquaculture, 64: 333–338.
]Search in Google Scholar
[
Al-Harbit A.H., Uddin N. (2005). Bacterial diversity of tilapia (Oreochromis niloticus) cultured in brackish water in Saudi Arabia. Aquaculture, 250: 566–572.
]Search in Google Scholar
[
Alves G.F.O., Fernandes A.F.A., Alvarenga E.R., Turra E.M., Sousa A.B., Teixeira E.A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.
]Search in Google Scholar
[
AOAC. (2005). Official methods of analysis. Association of official analytical chemists, INC., Arlington, Virginia, USA. P: 245.
]Search in Google Scholar
[
APHA. (2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st edn). American Public Health Association, Washington, DC, USA.
]Search in Google Scholar
[
Avnimelech Y., Kochba M. (2009) Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture, 287: 163–168.
]Search in Google Scholar
[
Avnimelech Y. (2012). Biofloc Technology – A Practical Guide Book. 2nd ed. The World Aquaculture Society, Baton Rouge, USA, 272 pp
]Search in Google Scholar
[
Azim M. E., Little D.C. (2008). The bioflocs technology (BFT) in indoor tanks: Water quality, bioflocs composition, and growth and welfare of nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.
]Search in Google Scholar
[
Bakhshi F., Najdegerami E.H., Manaffar R., Tukmechi A., Farah K.R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484: 259–267.
]Search in Google Scholar
[
Barman U.K., Jana S.N., Garg S.K., Bhatnagar A., Arasu A.R.T. (2005). Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): field and laboratory studies. Aquac. Int., 13: 241–256.
]Search in Google Scholar
[
Binalshikh-Abubkr T., Hanafiah M.M., Das S.K. (2021). Proximate chemical composition of dried shrimp and tilapia waste bioflocs produced by two drying methods. J. Mar. Sci. Eng., 9, 193.
]Search in Google Scholar
[
Boeuf G. Payan P. (2001). How should salinity influence fish growth? Comp. Biochem. Physiol.- C Toxicol. Pharmacol., 130(4): 411–423.
]Search in Google Scholar
[
Burford M.A., Longmore A.R. (2001). High ammonium production from sediments in hypereutrophic shrimp ponds. Mar. Ecol. Prog. Ser., 224, 187–195.
]Search in Google Scholar
[
Cnaani A., Hulata G. (2011). Improving salinity tolerance in tilapias: past experience and future prospects. Isr. J. Aquac., 63:1–21.
]Search in Google Scholar
[
Coyle S.D., Bright L.A., Wood D.R., Neal R.S., Tidwell J.H. (2011). Performance of Pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J. World Aquacult. Soc., 42: 687–695.
]Search in Google Scholar
[
Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res., 41: 559–567.
]Search in Google Scholar
[
Dawood M., Koshio S., Ishikawa M., Yokoyama S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac. Nutr., 22: 923–932.
]Search in Google Scholar
[
de Alvarenga E.R., Alves G.F.D.O., Fernandes A.F.A., Costa G.R., da Silva M.A., Teixeira E., Turra E.M. (2018). Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquac Res., 49(9): 2919–2926.
]Search in Google Scholar
[
de Azevedo R.V., dos Santos-Costa K., de Oliveira K.F., Flores-Lopes F., Teixeira-Lanna E.A., Tavares-Braga L.G. (2015). Responses of Nile tilapia to different levels of water salinity. Lat. Am. J. Aquat. Res., 43: 828–835.
]Search in Google Scholar
[
de Lima P.C.M., Silva L.O.B., de Lima Abreu J., da Silva S.M.B.C., Severi W., Gálvez A.O. (2019). Tilapia cultivated in a low-salinity biofloc system supplemented with Chlorella vulgaris and differents molasses application rates. Bol. Ins. Pesca, 45: e494
]Search in Google Scholar
[
de Macedo Dantas D.M., Lima P.C., Gálvez A.O., de Oliveira C.Y.B., de Oliveira C.D.L., e Abreu J.L. (2020). Growth of Chlorella vulgaris using wastewater from Nile tilapia (Oreochromis niloticus) farming in a low-salinity biofloc system. Acta Sci. Technol., 42.
]Search in Google Scholar
[
De Schryver P., Verstraete W. (2009). Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol., 100: 1162–1167.
]Search in Google Scholar
[
De Schryver P., Sinha A.K., Kunwar P.S., Baruah K., Verstraete W. (2010). Poly-beta-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol., 86: 1535–1541.
]Search in Google Scholar
[
de Souza R.L., de Lima E.C.R., de Melo F.P., Ferreira M.G.P., Correia E. (2019). The culture of Nile tilapia at different salinities using a biofloc system. Rev. Ciênc. Agron., 50: 267–275 p.
]Search in Google Scholar
[
Decamp O., Cody J., Conquest L., Delanoy G., Tacon A. G. (2003). Effect of salinity on natural community and production of Litopenaeus vannamei (Boone), within experimental zero-water exchange culture systems. Aquac Res., 34: 345–355.
]Search in Google Scholar
[
Durigon E.G., Lazzari R., Uczay J., Lopes D.L.D.A. Jerônimo G.T., Sgnaulin T. Emerenciano M.G.C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish., 5: 42–51.
]Search in Google Scholar
[
Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
]Search in Google Scholar
[
Ekasari J., Crab R., Verstraete W. (2010). Primary nutritional content of bioflocs cultured with different organic carbon sources and salinity. J. Biosci., 17: 125–130.
]Search in Google Scholar
[
Ekasari J., Napitupulu A.D., Djurstedt M., Wiyoto W., Baruah K., Kiessling A. (2023). Production performance, fillet quality and cost effectiveness of red Tilapia (Oreochromis sp.) culture in different biofloc systems. Aquaculture, 563: Part 2, 738956.
]Search in Google Scholar
[
El-Sayed A.F.M. (2006). Tilapia culture. Wallingford, Oxfordshire: CABI Publishing. https://doi.org/10.1079/9780851990149.0000.
]Search in Google Scholar
[
Emerenciano M., Gaxiola G., Cuzon G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: matovic MD (ed.) biomass now – cultivation and utilization, In Tech, Queen’s University, Belfast, Canada, pp. 301–328.
]Search in Google Scholar
[
Emerenciano M.G.C., Fitzsimmons K., Rombenso A.N., Miranda-Baeza A., Martins G.B., Lazzari R., Fimbres-Acedo Y.E., Pinho S.M. (2021). Biofloc technology (bft) in tilapia culture. In book: Biology and aquaculture of tilapia. Publisher: CRC Press/Taylor & Francis Group.
]Search in Google Scholar
[
Emerenciano M.G.C., Martínez-Córdova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture. pp. 91–109. In: Hlanganani, T. (ed.). Water Quality. InTech, Rijeka.
]Search in Google Scholar
[
FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
]Search in Google Scholar
[
Figueiredo J.P., de Morais A.P.M., da Silva W.A., Rafae R.E.Q., Santos I., Martins M.L., Vieira F.D., Belettini F., Andreatta E.R. (2022). Salinity in the culture of Nile tilapia in a biofloc system: Influence on growth and hematological parameters. Int. Aquat. Res., 14: 139–146.
]Search in Google Scholar
[
Fridman S., Bron J., Rana K. (2012). Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture, 334–337: 182–190.
]Search in Google Scholar
[
Gaona C.A.P., de Almeida M.S., Viau V., Poersch L.H., Wasielesky W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquac Res., 48: 1070–1079.
]Search in Google Scholar
[
Haraz Y.G., Shourbela R.M., El-Hawarry W.N., Mansour A.M., Elblehi S.S. (2023). Performance of juvenile Oreochromis niloticus raised in conventional and biofloc technology systems as influenced by probiotic water supplementation. Aquaculture, 566: 739180.
]Search in Google Scholar
[
Hargreaves J.A. (2013). Biofloc production system for aquaculture. Southern Regional Aquaculture Center (SRAC) Publication No. 4503.
]Search in Google Scholar
[
Hari B., Kurup B.M., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2006). The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture, 252: 248–263.
]Search in Google Scholar
[
Haridas H., Verma A.K., Rathore G., Prakash C., Sawant P.B., Rani B., Majeedkutty A. (2017). Enhanced growth and immuno-physiological response of genetically improved farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48: 4346–4355.
]Search in Google Scholar
[
Hersi M.A., Genc E., Pipilos A., Keskin E. (2023). Effects of dietary synbiotics and biofloc meal on the growth, tissue histomorphology, whole-body composition and intestinal microbiota profile of Nile tilapia (Oreochromis niloticus) cultured at different salinities. Aquaculture, 570: 739391.
]Search in Google Scholar
[
Iqbal K.J., Qureshi N.A., Ashraf M., Rehman M.H.U., Khan N., Javid A., Abbas F., Mushtaq M., Rasool F., Majeed H., Visions A. (2012). Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). J. Anim. Plant Sci., 22: 919–922.
]Search in Google Scholar
[
Jalali M., Davoodi R., Movahedinia A.A., Zadeh S.A.M. (2013). A comparative study on body composition of Shyrbot (Barbus grypus) fish reared in different salinities. Elixir Aquacult., 60: 16318–16320.
]Search in Google Scholar
[
Jauncey K. (2000). Nutritional requirements. In: Beveridge, M.C.M., McAndrew, B.J. (Eds.), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, London, UK, pp. 327–375.
]Search in Google Scholar
[
Ju Z., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.
]Search in Google Scholar
[
Kamal A.H.M.M., Mair G.C. (2005). Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture, 247: 189–201.
]Search in Google Scholar
[
Kamrani, E., Sharifinia, M., Hashemi, S.H., 2016. Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Marine Biodiversity 46: 561–577.
]Search in Google Scholar
[
Kammerer B.D., Cechjr J.J., Kültz D. (2010). Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A, 157: 260–265.
]Search in Google Scholar
[
Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.
]Search in Google Scholar
[
Khanjani M.H., Alizadeh M., Sharifinia M. (2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.
]Search in Google Scholar
[
Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I., (2022b) The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22(4): 1291–1299.
]Search in Google Scholar
[
Khanjani M.H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci., 15: 1465–1484.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.
]Search in Google Scholar
[
Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023b). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 739273.
]Search in Google Scholar
[
Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022e). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M., (2022a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquacult. Int., 30: 383–397.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M. (2022b). Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 45: 469–479.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M., Ghaedi, G. (2022a). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.
]Search in Google Scholar
[
Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022c). Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann. Anim. Sci., 22: 1201–1210.
]Search in Google Scholar
[
Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M.G.C. (2023a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757.
]Search in Google Scholar
[
Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023c). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137:108796.
]Search in Google Scholar
[
Khanjani M.H., Zahedi S., Mohammadi A. (2022d). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Scie. Pollut. Res., 29: 67513–67531.
]Search in Google Scholar
[
Kumar A., Harikrishna V., Reddy A.K., Chadha N.K., Rani B.A.M. (2016). Effect of salinity on proximate composition of Pangasianodon hypophthalmus reared in inland saline water. Int. J. Zool. Stud., 3: 19–21.
]Search in Google Scholar
[
Kumari S., Harikrishna V., Surasani V.K.R., Balange A.K., Babitha Rani A.M. (2021). Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water. Aquaculture, 540: 736730.
]Search in Google Scholar
[
Kumolu-Johnson C.A., Ndimele P.E. (2010). Length-weight relationships and condition factors of twenty-one fish species in ologe lagoon, lagos, Nigeria. Asian J. Agric. Sci., 4: 174–179.
]Search in Google Scholar
[
Likongwe J.S., Stecko T.D., Stauffer J.R., Carline R.F. (1996). Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture, 146: 37–46.
]Search in Google Scholar
[
Lima P.C., Abreu J.L., Silva A.E., Severi W., Galvez A.O., Brito L.O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span. J. Agric. Res., 16: e0612–e0612.
]Search in Google Scholar
[
Loureiro C.K., Wasielesky W.Jr., Abreu P.C. (2012). The use of protozoan, rotifers and nematodes as live food for shrimp raised in BFT system. Atlantica, Rio Grande, 34: 5–12.
]Search in Google Scholar
[
Luo G., Gao Q., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7.
]Search in Google Scholar
[
Luo G., Li W., Tan H., Chen X. (2017). Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems. Aquac. Fish, 2: 220–226.
]Search in Google Scholar
[
Ma C.W., Cho Y.S., Oh K.H. (2009). Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture, 287: 266–270.
]Search in Google Scholar
[
Ma X.C., Li X.K., Wang X.W., Liu G.G., Zuo J.L., Wang S.T., Wang K. (2020). Impact of salinity on anaerobic microbial community structure in high organic loading purified terephthalic acid wastewater treatment system. J. Hazard. Mate., 383: 121–132.
]Search in Google Scholar
[
Maicá P.F., Borba M.R.D., Martins T.G., Wasielesky W. (2014). Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Rev. Bras. de Zootec., 43: 343–350.
]Search in Google Scholar
[
Martínez-Córdova L.R., Emerenciano M.G.C., Miranda-Baeza A., Martínez-Porchas M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquacult., 7: 131–148.
]Search in Google Scholar
[
Mayer M. (2018). The effects of salt concentration on Bacterial growth. [https://sciencing.com/effects-salt-concentration-bacterial-growth-5924409.html] site visited on 03/09/2018.
]Search in Google Scholar
[
Minabi K., Sourinejad I., Alizadeh M., Rajabzadeh Ghatrami E., Khanjani M.H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int., 28: 1883–1898.
]Search in Google Scholar
[
Minaz M., Yazıcı İ.S., Sevgili H., Aydın İ. (2023). Biofloc technology in aquaculture: Advantages and disadvantages from social and applicability perspectives, Ann. Anim. Sci., DOI: 10.2478/aoas-2023-0043.
]Search in Google Scholar
[
Minaz M., Kubilay A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquacult. Int., 29: 1121–1140.
]Search in Google Scholar
[
Mirzakhani N., Ebrahimi E., Jalali S.A.H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.
]Search in Google Scholar
[
Mohamed N.A., Saad M.F., Shukry M., El-Keredy A.M.S., Nasif O., Doan H.V., Dawood A.O. (2021). Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress. Aquac. Rep., 19: 100567.
]Search in Google Scholar
[
Mohammady E.Y., Soaudy M.R., Ali M.M., El-ashry M.A., Abd El-Karim M.S., Jarmołowicz S., Hassaan M.S. (2023). Response of Nile tilapia under biofloc system to floating or sinking feed and feeding rates: Water quality, plankton community, growth, intestinal enzymes, serum biochemical and antioxidant status. Aquac. Rep., 29: 101489.
]Search in Google Scholar
[
Moopam R. (1999). Manual of oceanographic observations and pollutant analysis methods (vol. 1, p. 20). Kuwait: ROPME.
]Search in Google Scholar
[
Morado C.N., Araújo F. G., Gomes I.D. (2017). The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci., 39: 431–439.
]Search in Google Scholar
[
Nassar S.A., Hassan A.G.A., Badran M.F., Abdel-Rahim M.M. (2021). Effects of salinity level on growth performance, feed utilization, and chromatic deformity of the hybrid Red tilapia, Oreochromis niloticus x O. Mossambicus. Egypt. J. Aquat. Biol. Fish, 25: 49–61.
]Search in Google Scholar
[
Nootong K., Pavasant P., Powtongsook S. (2011). Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a Biofloc System. J. World Aquac. Soc., 42: 339–346.
]Search in Google Scholar
[
Ohta M., Watanabe T. (1996). Energy requirement for maintenance of body weight and activity for maximum growth in rainbow trout. Fish. Sci., 62: 737–744.
]Search in Google Scholar
[
Perez-Velazquez M., González-Félix M.L., Gómez-Jiménez S., Davis D.A., Miramontes-Higuera N. (2008). Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquac. Res., 39: 995–1004.
]Search in Google Scholar
[
Rakocy J.E., Bailey D.S., Thoman E.S., Shultz, R.C. (2004). Intensive tank culture of tilapia with a suspended, bacterial-based, treatment process. new dimensions on farmed tilapia. In proceedings of the sixth international symposium on Tilapia in aquaculture, Manila, The Philippines (pp. 584e598).
]Search in Google Scholar
[
Romana-Eguia M.R.R., Eguia R.V. (1999). Growth of five Asian red tilapia strains in saline environments. Aquaculture, 173: 161–170.
]Search in Google Scholar
[
Russell N.J., Nichols D.S. (1999). Polyunsaturated f,atty acids in marine bacteria e a dogma rewritten. Microbiology, 145: 767–779.
]Search in Google Scholar
[
Schofield P.J., Peterson M.S., Lowe M.R., Brown-Peterson N.J., Slack W.T. (2011). Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities. Mar. Freshw. Res., 62: 439–449.
]Search in Google Scholar
[
Sharifinia M. (2015). Macroinvertebrates of the Iranian running waters: a review. Acta Limnol. Bras., 27: 356–369.
]Search in Google Scholar
[
Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023). The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Ann. Anim. Sci., 23: 519–528.
]Search in Google Scholar
[
Sharifinia M., Penchah M.M., Mahmoudifard A., Gheibi A., Zare R. (2015). Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques. Sains Malays., 44: 387–397.
]Search in Google Scholar
[
Shearer K.D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 119: 63–88.
]Search in Google Scholar
[
Tao N.P., Wang L.Y., Gong X., Liu Y. (2012). Comparison of nutritional composition of farmed pufferfish muscles among Fugu obscurus, Fugu flavidus and Fugu rubripes. J. Food Compos. Anal., 28: 40–45.
]Search in Google Scholar
[
Tseng Y., Hwang P. (2008). Some insights into energy metabolism for osmoregulation in fish. Comparat. Biochem. Physiol. C, 148: 419–429.
]Search in Google Scholar
[
Tubin J.S.B., Paiano D., de Oliveira Hashimoto G.S., Furtado W.E., Martins M.L., Durigon E., Emerenciano M.G.C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system, Aquaculture, 519: 734763.
]Search in Google Scholar
[
Tubin, J.S.B., Gutiérrez, S.M., Monroy-Dosta, M.D.C., Khanjani, M.H., Emerenciano, M.G.C., Biofloc technology and cockroach (Nauphoeta cinerea) insect meal-based diet for Nile tilapia: zootechnical performance, proximate composition and bacterial profile. Ann. Anim. Sci., DOI: 10.2478/aoas-2023-0047.
]Search in Google Scholar
[
Widanarni Ekasari J., Maryam S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI J. Biosci., 19: 73–80.
]Search in Google Scholar
[
Wu L., Liang H., Hamunjoa C.M.K., Ge X., Ji K., Yu H., Huang D., Xu H., Ren M. (2021). Culture salinity alters dietary protein requirement, whole body composition and nutrients metabolism related genes expression in juvenile Genetically Improved Farmed Tilapia (GIFT) (Oreochromis niloticus). Aquaculture, 531: 735961.
]Search in Google Scholar
[
Xu J., Yan B., Teng Y., Lou G., Lu Z. (2010). Analysis of nutrient composition and fatty acid profiles of Japanese sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater. J. Food Compos. Anal., 23: 401–405.
]Search in Google Scholar
[
Xu W.J., Pan L.Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.
]Search in Google Scholar
[
Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.
]Search in Google Scholar
[
Zhang N., Luo G.Z., Tan H.X., Liu W.C., Hou Z.W. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-bhydroxybutyric as a carbon source. Aquaculture, 264: 710–717.
]Search in Google Scholar