[
Abdelmegeed S.M., Mohammed S. (2018). Canine mammary tumors as a model for human disease. Oncol. Lett., 15: 8195–8205.10.3892/ol.2018.8411
]Search in Google Scholar
[
Abubakar M., Guo C., Koka H., Sung H., Shao N., Guida J. et al. (2019). Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. NPJ Breast Cancer, 5: 1–9.10.1038/s41523-019-0117-7
]Search in Google Scholar
[
Ahern T.E., Bird R.C., Bird A.E., Wolfe L.G. (1996). Expression of the oncogene c-erbB-2 in canine mammary cancers and tumor-derived cell lines. Am. J. Vet. Res., 57: 693–696.
]Search in Google Scholar
[
Al-Mansour M.A., Kubba M.A., Al-Azreg S.A., Dribika S.A. (2018). Comparative histopathology and immunohistochemistry of human and canine mammary tumors. Open Vet. J., 8: 243–249.10.4314/ovj.v8i3.3
]Search in Google Scholar
[
Anguille S., Smits E.L., Bryant C., Van Acker H.H., Goossens H., Lion E. et al. (2015). Dendritic cells as pharmacological tools for cancer immunotherapy. Pharm. Rev., 67: 731–753.10.1124/pr.114.009456
]Search in Google Scholar
[
Arenas C., Peña L., Granados‐Soler J.L., Pérez‐Alenza M.D. (2016). Adjuvant therapy for highly malignant canine mammary tumours: Cox‐2 inhibitor versus chemotherapy: a case–control prospective study. Vet. Rec., 179: 125–125.10.1136/vr.103398
]Search in Google Scholar
[
Ariyarathna H., Thomson N.A., Aberdein D., Perrott M.R., Munday J.S. (2020). Increased programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) expression is associated with metastasis and poor prognosis in malignant canine mammary gland tumours. Vet. Immunol. Immunopathol., 230: 110142.10.1016/j.vetimm.2020.110142
]Search in Google Scholar
[
Baba A.I., Câtoi C. (2007). Mammary gland tumors. Comp. Oncol. The Publishing House of the Romanian Academy.
]Search in Google Scholar
[
Baker R., Lumsden J.H. (2000). The head and neck–oropharynx, tonsils, salivary gland and thyroid. Color Atlas of Cytology of the Dog and Cat. Mosby, St. Louis, 95–116.
]Search in Google Scholar
[
Barenholz Y.C. (2012). Doxil®—the first FDA-approved nano-drug: lessons learned. J. Controlled Release, 160(2): 117–134.10.1016/j.jconrel.2012.03.020
]Search in Google Scholar
[
Bird R.C., DeInnocentes P., Bird A.E.C., Kabir F.M.L., Martinez-Romero E.G., Smith A.N., Smith B.F. (2019). Autologous hybrid cell fusion vaccine in a spontaneous intermediate model of breast carcinoma. J. Vet. Sci., 20(5): e48.10.4142/jvs.2019.20.e48
]Search in Google Scholar
[
Borge K.S., Børresen‐Dale A.L., Lingaas F. (2011). Identification of genetic variation in 11 candidate genes of canine mammary tumour. Vet. Comp. Oncol., 9: 241–250.10.1111/j.1476-5829.2010.00250.x
]Search in Google Scholar
[
Brønden L.B., Flagstad A., Rutteman G.R., Teske E. (2003). Study of dog and cat owners’ perceptions of medical treatment for cancer. Vet. Rec., 152: 77–80.10.1136/vr.152.3.77
]Search in Google Scholar
[
Brown N.O., Patnaik A.K., MacEwen E.G. (1985). Canine hemangiosarcoma: retrospective analysis of 104 cases. J. Am. Vet. Med. Assoc., 186: 56–58.
]Search in Google Scholar
[
Brunelle M., Sartin E.A., Wolfe L.G., Sirois J., Dore M. (2006). Cyclooxygenase-2 expression in normal and neoplastic canine mammary cell lines. Vet. Pathol., 43: 656–666.10.1354/vp.43-5-656
]Search in Google Scholar
[
Canadas-Sousa A., Santos M., Leal B., Medeiros R., Dias-Pereira P. (2019). Estrogen receptors genotypes and canine mammary neoplasia. BMC Vet. Res., 15(1): 1–10.10.1186/s12917-019-2062-y
]Search in Google Scholar
[
Carvalho M. I., Pires I., Prada J., Queiroga F.L. (2014). A role for T-lymphocytes in human breast cancer and in canine mammary tumors. Biomed. Res. Int., 2014: 130894.10.1155/2014/130894
]Search in Google Scholar
[
Chang S.C., Chang C.C., Chang T.J., Wong M.L. (2005). Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). J. Am. Vet. Med. Assoc., 227: 1625–1629.10.2460/javma.2005.227.1625
]Search in Google Scholar
[
Cheung Y.C., Chen S.C., Hsieh I.C., Lo Y.F., Tsai H.P., Hsueh S., Yen T.C. (2006). Multidetector computed tomography assessment on tumor size and nodal status in patients with locally advanced breast cancer before and after neoadjuvant chemotherapy. Eur. J. Surg. Oncol., 32(10): 1186–1190.10.1016/j.ejso.2006.03.026
]Search in Google Scholar
[
Cimino-Mathews A., Thompson E., Taube J.M., Ye X., Lu Y., Meeker A. et al. (2016). PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol., 47: 52–63.10.1016/j.humpath.2015.09.003
]Search in Google Scholar
[
Collivignarelli F., Tamburro R., Aste G., Falerno I., Del Signore F., Simeoni F., Patsikas M., Gianfelici J., Terragni R., Attorri V., Carluccio, A., Vignoli M. (2021). Lymphatic drainage mapping with indirect lymphography for canine mammary tumors. Animals, 11(4): 1115.10.3390/ani11041115
]Search in Google Scholar
[
Costa R.L.B., Soliman H., Czerniecki B.J. (2017). The clinical development of vaccines for HER2+ breast cancer: Current landscape and future perspectives. Cancer Treat. Rev., 61: 107–115.10.1016/j.ctrv.2017.10.005
]Search in Google Scholar
[
Coulie P.G., Van den Eynde B.J., Van Der Bruggen P., Boon T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer, 14: 135–146.10.1038/nrc3670
]Search in Google Scholar
[
Cullen S.P., Brunet M., Martin S.J. (2010). Granzymes in cancer and immunity. Cell Death Differ., 17: 616–623.10.1038/cdd.2009.206
]Search in Google Scholar
[
De Campos C.B., Lavalle G.E., Monteiro L.N., PÊGAS G.R.A., Fialho S.L., Balabram D., Cassali G.D. (2018). Adjuvant thalidomide and metronomic chemotherapy for the treatment of canine malignant mammary gland neoplasms. In Vivo, 32: 1659–1666.10.21873/invivo.11429
]Search in Google Scholar
[
DeInnocentes P., Li L.X., Sanchez R.L., Bird R.C. (2006). Expression and sequence of canine SIRT2 and p53 genes in canine mammary tumour cells–effects on downstream targets Wip1 and p21/Cip1. Vet. Comparative Oncol., 4(3): 161–177.10.1111/j.1476-5829.2006.00105.x
]Search in Google Scholar
[
Dias M.L.D.M., Andrade J.M.L., Castro M.B.D., Galera P.D. (2016). Survival analysis of female dogs with mammary tumors after mastectomy: epidemiological, clinical and morphological aspects. Pesquisa Vet. Bras., 36: 181–186.10.1590/S0100-736X2016000300006
]Search in Google Scholar
[
Easton D.F., Pooley K.A., Dunning A.M., Pharoah P.D., Thompson D., Ballinger D.G. et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447: 1087–1093.
]Search in Google Scholar
[
Egenvall A., Bonnett B.N., Öhagen P., Olson P., Hedhammar Å., von Euler H. (2005). Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Prevent. Vet. Med., 69: 109–127.10.1016/j.prevetmed.2005.01.014
]Search in Google Scholar
[
Elston C.W., Ellis I.O. (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long‐term follow‐ up. Histopathology, 19: 403–410.10.1111/j.1365-2559.1991.tb00229.x
]Search in Google Scholar
[
Ernst B., Anderson K.S. (2015). Immunotherapy for the treatment of breast cancer. Curr. Oncol. Rep., 17: 1–10.10.1007/s11912-014-0426-9
]Search in Google Scholar
[
Farzad N., Barati N., Momtazi-Borojeni A.A., Yazdani M., Arab A., Razazan A. et al. (2019). P435 HER2/neu-derived peptide conjugated to liposomes containing DOPE as an effective prophylactic vaccine formulation for breast cancer. Artif Cells Nanomed. Biotechnol., 47: 664–672.10.1080/21691401.2019.1576702
]Search in Google Scholar
[
Fazekas J., Fürdös I., Singer J., Jensen-Jarolim E. (2016). Why man’s best friend, the dog, could also benefit from an anti-HER-2 vaccine. Oncol. Lett., 12: 2271–2276.10.3892/ol.2016.5001
]Search in Google Scholar
[
Fisher B., Costantino J.P., Wickerham D.L., Cecchini R.S., Cronin W.M., Robidoux A., Bevers T.B., Kavanah M.T., Atkins J.N., Margolese R.G., Runowicz C.D. (2005). Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl. Cancer Inst., 97: 1652–1662.10.1093/jnci/dji372
]Search in Google Scholar
[
Foong J.N., Selvarajah G.T., Rasedee A., Rahman H.S., How C.W., Beh C.Y. et al. (2018). Zerumbone-Loaded Nanostructured Lipid Carrier Induces Apoptosis of Canine Mammary Adenocarcinoma Cells. Biomed Res. Int., 2018: 8691569.10.1155/2018/8691569
]Search in Google Scholar
[
Fossum T.W. (2013). Small animal surgery. Fourth edition Mosby Elsevier, 1142–1233.
]Search in Google Scholar
[
Foy S.P., Mandl S.J., dela Cruz T., Cote J.J., Gordon E.J., Trent E. et al. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunol. Immunother., 65: 537–549.10.1007/s00262-016-1816-7
]Search in Google Scholar
[
Gabai V., Venanzi F.M., Bagashova E., Rud O., Mariotti F., Vullo C. et al. (2014). Pilot study of p62 DNA vaccine in dogs with mammary tumors. Oncotarget, 5: 12803.10.18632/oncotarget.2516
]Search in Google Scholar
[
Gaddam S., Heller S.L., Babb J.S., Gao Y. (2021). Male breast cancer risk assessment and screening recommendations in high-risk men who undergo genetic counseling and multigene panel testing. Clin. Breast Cancer, 21(1): e74–e79.10.1016/j.clbc.2020.07.014
]Search in Google Scholar
[
Gatti-Mays M.E., Balko J.M., Gameiro S.R., Bear H.D., Prabhakaran S., Fukui J. et al. (2019). If we build it, they will come: targeting the immune response to breast cancer. NPJ Breast Cancer, 5: 1–13.10.1038/s41523-019-0133-7
]Search in Google Scholar
[
Gilbertson S.R., Kurzman I.D., Zachrau R.E., Hurvitz A.I., Black M.M. (1983). Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Vet. Pathol., 20(2): 127–142.10.1177/030098588302000201
]Search in Google Scholar
[
Gobello C., Corrada Y. (2001). Canine mammary tumors: An endocrine clinical approach. Compendium On Continuing Education For The Practising Veterinarian-North American Edition-, 23: 705–711.
]Search in Google Scholar
[
Goldschmidt M., Peña L., Rasotto R., Zappulli V. (2011). Classification and grading of canine mammary tumors. Vet. Pathol., 48: 117–131.10.1177/0300985810393258
]Search in Google Scholar
[
Guo Z., He B., Yuan L., Dai W., Zhang H., Wang X., Wang J., Zhang X., Zhang Q. (2015). Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int. J. Pharm., 493: 380–389.10.1016/j.ijpharm.2015.05.051
]Search in Google Scholar
[
Harris T.J., Drake C.G. (2013). Primer on tumor immunology and cancer immunotherapy. J. Immunother. Cancer, 1: 1–9.10.1186/2051-1426-1-12
]Search in Google Scholar
[
He Z., Chen Z., Tan M., Elingarami S., Liu Y., Li T. et al. (2020). A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferation, 53: e12822.10.1111/cpr.12822
]Search in Google Scholar
[
Heller D.A., Clifford C.A., Goldschmidt M.H., Holt D.E., Shofer F.S., Smith A., Sorenmo K.U. (2005). Cyclooxygenase-2 expression is associated with histologic tumor type in canine mammary carcinoma. Vet. Pathol., 42: 776–780.10.1354/vp.42-6-776
]Search in Google Scholar
[
Hirano F., Kaneko, K., Tamura H., Dong H., Wang S., Ichikawa M. et al. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res., 65: 1089–1096.10.1158/0008-5472.1089.65.3
]Search in Google Scholar
[
Hurst E.A., Pang L.Y., Argyle D.J. (2019). The selective cyclooxygenase‐2 inhibitor mavacoxib (Trocoxil) exerts anti‐tumour effects in vitro independent of cyclooxygenase‐2 expression levels. Vet. Comp. Oncol., 17: 194–207.10.1111/vco.12470
]Search in Google Scholar
[
Igase M., Nemoto Y., Itamoto K., Tani K., Nakaichi M., Sakurai M. et al. (2020). A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep., 10: 1–16.10.1038/s41598-020-75533-4
]Search in Google Scholar
[
Jaillardon L., Barthélemy A., Goy‐Thollot I., Pouzot‐Nevoret C., Fournel‐Fleury C. (2012). Mammary gland carcinoma in a dog with peripheral blood and bone marrow involvement associated with disseminated intravascular coagulation. Vet. Clin. Pathol, 41: 261–265.10.1111/j.1939-165X.2012.00433.x
]Search in Google Scholar
[
Joseph R.B. (2002). Encyclopedia of Cancer: Volume 1 A-R. New York: Academic Press, 2002, 2nd Edition.
]Search in Google Scholar
[
Kalinski P., Talmadge J.E. (2017). Tumor immuno-environment in cancer progression and therapy. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy, 1–18. Springer, Cham.10.1007/978-3-319-67577-0_129275461
]Search in Google Scholar
[
Kamphorst A.O., Pillai R.N., Yang S., Nasti T.H., Akondy R.S., Wieland A. et al. (2017). Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc. Natl Acad. Sci., 114: 4993–4998.10.1073/pnas.1705327114
]Search in Google Scholar
[
Karami F., Mehdipour P. (2013). A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. BioMed Res. Intern., 2013: 928562.10.1155/2013/928562
]Search in Google Scholar
[
Kimiz-Gebologlu I., Gulce-Iz S., Biray-Avci C. (2018). Monoclonal antibodies in cancer immunotherapy. Mol. Biol. Rep., 45: 2935–2940.10.1007/s11033-018-4427-x
]Search in Google Scholar
[
Klopfleisch R., Lenze D., Hummel M., Gruber A.D. (2010). Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer, 10: 618.10.1186/1471-2407-10-618
]Search in Google Scholar
[
Knottenbelt C., Chambers G., Gault E., Argyle D.J. (2006). The in vitro effects of piroxicam and meloxicam on canine cell lines. J. Small Animal Prac., 47: 14–20.10.1111/j.1748-5827.2006.00006.x
]Search in Google Scholar
[
Kristiansen V. M., Peña L., Díez Córdova L., Illera J.C., Skjerve E., Breen A.M. et al. (2016). Effect of ovariohysterectomy at the time of tumor removal in dogs with mammary carcinomas: a randomized controlled trial. J. Vet. Intern. Med., 30(1): 230–241.10.1111/jvim.13812
]Search in Google Scholar
[
Kristiansen V. M., Nødtvedt A., Breen A.M., Langeland M., Teige J., Goldschmidt M. et al. (2013). Effect of ovariohysterectomy at the time of tumor removal in dogs with benign mammary tumors and hyperplastic lesions: a randomized controlled clinical trial. J. Vet. Intern. Med., 27: 935–942.10.1111/jvim.12110
]Search in Google Scholar
[
Ku C.K., Kass P.H., Christopher M.M. (2017). Cytologic–histologic concordance in the diagnosis of neoplasia in canine and feline lymph nodes: a retrospective study of 367 cases. Vet. Comp. Oncol., 15: 1206–1217.10.1111/vco.12256
]Search in Google Scholar
[
Lakins M.A., Ghorani E., Munir H., Martins C.P., Shields J.D. (2018). Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T Cells to protect tumour cells. Nat. Comm., 9: 1–9.10.1038/s41467-018-03347-0
]Search in Google Scholar
[
Lana S.E., Rutteman G.R., Withrow S.J. (2007). Tumors of the mammary gland. Withrow & MacEwen’s Small Animal Clinical Oncology, 619–636. WB Saunders.10.1016/B978-072160558-6.50029-0
]Search in Google Scholar
[
Lavalle G.E., De Campos C.B., Bertagnolli A.C., Cassali G.D. (2012). Canine malignant mammary gland neoplasms with advanced clinical staging treated with carboplatin and cyclooxygenase inhibitors. In Vivo, 26: 375–379.
]Search in Google Scholar
[
Levi M., Salaroli R., Parenti F., De Maria R., Zannoni A., Bernardini C. et al. (2021). Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines. BMC Vet. Res., 17: 1–15.10.1186/s12917-020-02709-5
]Search in Google Scholar
[
Li C., Jiang P., Wei S., Xu X., Wang J. (2020). Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer, 19: 1–23.10.1186/s12943-020-01234-1
]Search in Google Scholar
[
Li Y., Miao W., He D., Wang S., Lou J., Jiang Y., Wang S. (2021). Recent progress on immunotherapy for breast cancer: tumor microenvironment, nanotechnology and more. Front. Bioeng. Biotech., 9: 453.10.3389/fbioe.2021.680315
]Search in Google Scholar
[
Liu C.Y., Hung M.H., Wang D.S., Chu P.Y., Su J.C., Teng T.H. et al. (2014). Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent phospho-Akt inactivation in estrogen receptor–negative human breast cancer cells. Breast Cancer Res., 16: 1–15.10.1186/s13058-014-0431-9
]Search in Google Scholar
[
Madewell B.R., Phillips B.S., Kraegel S.A. (1999). Optimizing the diagnostic use of a small clinical biopsy. J. Vet. Diag. Invest., 11: 94–97.10.1177/104063879901100116
]Search in Google Scholar
[
Maekawa N., Konnai S., Takagi S., Kagawa Y., Okagawa T., Nishimori A. et al. (2017). A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci. Rep., 7: 1–12.10.1038/s41598-017-09444-2
]Search in Google Scholar
[
Manikkan Dileepkumar K., Kumar Maiti S., Kumar N., Shams-uz-Zama M.M. (2015). Therapeutic Evaluation of Anti-Angiogenic and Chemotherapy with or without Cox-2 Inhibitor and Immunomodulator Drug in the Management of Canine Mammary Neoplasm. Pak. Vet. J., 35: 365–370.
]Search in Google Scholar
[
Mann F.A., Constantinescu G.M., Yoon H.Y. (2011). Fundamentals of small animal surgery. Wiley Blackwell Publishing Ltd., 448 pp.
]Search in Google Scholar
[
Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 23: 549–555.10.1016/S1471-4906(02)02302-5
]Search in Google Scholar
[
Mastelic-Gavillet B., Balint K., Boudousquie C., Gannon P. O., Kandalaft L.E. (2019). Personalized dendritic cell vaccines—recent breakthroughs and encouraging clinical results. Front. Immunol., 10: 766.10.3389/fimmu.2019.00766
]Search in Google Scholar
[
McCourt M.R., Dieterly A.M., Mackey P.E., Lyon S.D., Rizzi T.E., Ritchey J.W. (2018). Complex mammary carcinoma with metastases to lymph nodes, subcutaneous tissue, and multiple joints in a dog. Vet. Clin. Pathol., 47: 477–483.10.1111/vcp.12615
]Search in Google Scholar
[
McNeill C.J., Sorenmo K.U., Shofer F.S., Gibeon L., Durham A.C., Barber L.G. et al. (2009). Evaluation of adjuvant doxorubicin‐based chemotherapy for the treatment of feline mammary carcinoma. J. Vet. Intern. Med., 23: 123–129.10.1111/j.1939-1676.2008.0244.x
]Search in Google Scholar
[
Millanta F., Citi S., Della Santa D., Porciani M., Poli A. (2006). COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic fmolecular markers. Breast Cancer Res. Treat., 98: 115–120.10.1007/s10549-005-9138-z
]Search in Google Scholar
[
Misdorp W. (1988). Canine mammary tumours: protective effect of late ovariectomy and stimulating effect of progestins. Vet. Quarterly, 10: 26–33.10.1080/01652176.1988.9694142
]Search in Google Scholar
[
Mobasheri A., Cassidy J.P. (2010). Biomarkers in veterinary medicine: Towards targeted, individualised therapies for companion animals. Vet. J., 185: 1–3.10.1016/j.tvjl.2010.04.003
]Search in Google Scholar
[
Moe L. (2001). Population-based incidence of mammary tumours in some dog breeds. J. Reprod. Fertil, 57: 439–443.
]Search in Google Scholar
[
Moon C.H., Kim D.H., Yun S.H., Lee H.B., Jeong S.M. (2022). Assessment of prognostic factors in dogs with mammary gland tumors: 60 cases (2014–2020). Korean J. Vet. Res., 62(1): 9–1.10.14405/kjvr.20210046
]Search in Google Scholar
[
Mufudza C., Sorofa W., Chiyaka E.T. (2012). Assessing the effects of estrogen on the dynamics of breast cancer. Computational Math. Methods Med., 2012: 473572.10.1155/2012/473572
]Search in Google Scholar
[
Muhammadnejad A., Keyhani E, Mortazavi P., Behjati F., Haghdoost I.S. (2012). Overexpression of HER-2/neu in Malignant Mammary Tumors: Translation of Clinicopathological Features from Dog to Human. Asian Pac. J. Cancer Prev., 13: 6415–6421.10.7314/APJCP.2012.13.12.6415
]Search in Google Scholar
[
Nakagawa M., Morimoto M., Takechi H., Tadokoro Y., Tangoku A. (2016). Preoperative diagnosis of sentinel lymph node (SLN) metastasis using 3D CT lymphography (CTLG). Breast Cancer, 23(3): 519–524.10.1007/s12282-015-0597-8
]Search in Google Scholar
[
Nelde A., Rammensee H.G., Walz J.S. (2021). The peptide vaccine of the future. Mol. Cell. Proteom., 20: 100022.10.1074/mcp.R120.002309
]Search in Google Scholar
[
Nguyen F., Peña L., Ibisch C., Loussouarn D., Gama A., Rieder N. et al. (2018). Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res. Treat., 167: 635–648.10.1007/s10549-017-4548-2
]Search in Google Scholar
[
Novosad C.A. (2003). Principles of treatment for mammary gland tumors. Clin. Tech. Small Animal Prac., 18: 107–109.10.1053/svms.2003.36625
]Search in Google Scholar
[
Pan K., Guan X.X., Li Y.Q., Zhao J.J., Li J.J., Qiu H.J. et al. (2014). Clinical activity of adjuvant cytokine-induced killer cell immunotherapy in patients with post-mastectomy triple-negative breast cancer. Clin. Cancer Res., 20: 3003–3011.10.1158/1078-0432.CCR-14-0082
]Search in Google Scholar
[
Pang L.Y., Argyle S.A., Kamida A., Morrison K.O.N., Argyle D.J. (2014). The long-acting COX-2 inhibitor mavacoxib (Trocoxil™) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Vet. Res., 10: 184.10.1186/PREACCEPT-9511370941246208
]Search in Google Scholar
[
Papazoglou L.G., Basdani E., Rabidi S., Patsikas M.N., Karayiannopoulou M. (2014). Current surgical options for mammary tumor removal in dogs. J. Vet. Sci. Med., 2: 2–7.
]Search in Google Scholar
[
Peña L., Gama A., Goldschmidt M.H., Abadie J., Benazzi C., Castagnaro M. et al. (2014). Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet. Pathol., 51(1): 127–145.10.1177/0300985813509388
]Search in Google Scholar
[
Peña L., Andrés P.D., Clemente M., Cuesta P., Perez-Alenza M.D. (2013). Prognostic value of histological grading in noninflammatory canine mammary carcinomas in a prospective study with two-year follow-up: relationship with clinical and histological characteristics. Vet. Pathol., 50: 94–105.10.1177/0300985812447830
]Search in Google Scholar
[
Perez A.T., Domenech G.H., Frankel C., Vogel C.L. (2002). Pegylated liposomal doxorubicin (Doxil®) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest., 20(2): 22–29.10.1081/CNV-120014883
]Search in Google Scholar
[
Perez C.R., De Palma M. (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Comm., 10: 1–10.10.1038/s41467-019-13368-y
]Search in Google Scholar
[
Peruzzi D., Mesiti G., Ciliberto G., La Monica N., Aurisicchio L. (2010). Telomerase and HER-2/neu as targets of genetic cancer vaccines in dogs. Vaccine, 28: 1201–1208.10.1016/j.vaccine.2009.11.031
]Search in Google Scholar
[
Pievani A., Borleri G., Pende D., Moretta L., Rambaldi A., Golay J., Introna M. (2011). Dual-functional capability of CD3+ CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood J. Am. Soc. Hematol., 118: 3301-3310.10.1182/blood-2011-02-33632121821703
]Search in Google Scholar
[
Planes-Laine G., Rochigneux P., Bertucci F., Chrétien A.S., Viens P., Sabatier R., Gonçalves
]Search in Google Scholar
[
A. (2019). PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging—a literature review. Cancers, 11: 1033.10.3390/cancers11071033667922331336685
]Search in Google Scholar
[
Polyak K. (2007). Breast cancer: origins and evolution. J. Clin. Invest., 117: 3155–3163.10.1172/JCI33295204561817975657
]Search in Google Scholar
[
Queiroga F.L., Raposo T., Carvalho M.I., Prada J., Pires I. (2011). Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo, 25: 455–465.
]Search in Google Scholar
[
Ramalho L.N.Z., Ribeiro-Silva A., Cassali G.D., Zucoloto S. (2006). The expression of p63 and cytokeratin 5 in mixed tumors of the canine mammary gland provides new insights into the histogenesis of these neoplasms. Vet. Pathol., 43(4): 424–429.10.1354/vp.43-4-424
]Search in Google Scholar
[
Rasotto R., Berlato D., Goldschmidt M.H., Zappulli V. (2017). Prognostic significance of canine mammary tumor histologic subtypes: an observational cohort study of 229 cases. Vet. Pathol., 54(4): 571–578.10.1177/0300985817698208
]Search in Google Scholar
[
Rawat P.S., Jaiswal A., Khurana A., Bhatti J.S., Navik U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother., 139: 111708.10.1016/j.biopha.2021.111708
]Search in Google Scholar
[
Razazan A., Behravan J., Arab A., Barati N., Arabi L., Gholizadeh Z. et al. (2017). Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PloS one, 12: e0185099.10.1371/journal.pone.0185099
]Search in Google Scholar
[
Ressel L., Puleio R., Loria G.R., Vannozzi I., Millanta F., Caracappa S., Poli A. (2013). HER-2 expression in canine morphologically normal, hyperplastic and neoplastic mammary tissues and its correlation with the clinical outcome. Res. Vet. Sci., 94: 299–305.10.1016/j.rvsc.2012.09.016
]Search in Google Scholar
[
Rivera P., Melin M., Biagi T., Fall T., Häggström J., Lindblad-Toh K., von Euler H. (2009). Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res., 69: 8770–8774.10.1158/0008-5472.CAN-09-1725
]Search in Google Scholar
[
Rodel F., Sprenger T., Kaina B., Liersch T., Rodel C., Fulda S., Hehlgans S. (2012). Survivin as a prognostic/predictive marker and molecular target in cancer therapy. Curr. Med. Chem., 19: 3679–3688.10.2174/092986712801661040
]Search in Google Scholar
[
Rodriguez C., Hansen G. (2014). Bioavailability and safety of caninized anti-CD52 monoclonal antibody in dogs with T-cell lymphoma. In Proceedings: 34th Annual Veterinary Cancer Society Conference, St. Louis.
]Search in Google Scholar
[
Rue S.M., Eckelman B.P., Efe J.A., Bloink K., Deveraux Q.L., Lowery D., Nasoff M. (2015). Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma. Vet. Immunol. Immunopathol., 164: 148–159.10.1016/j.vetimm.2015.02.004
]Search in Google Scholar
[
Rüegg C., Zaric J., Stupp R. (2003). Non-steroidal anti‐inflammatory drugs and COX‐2 inhibitors as anti‐cancer therapeutics: hypes, hopes and reality. Ann. Med., 35: 476–487.10.1080/07853890310017053
]Search in Google Scholar
[
Rutteman G.R. (1992). Contraceptive steroids and the mammary gland: Is there a hazard? Breast Cancer Res. Treat., 23: 29–41.10.1007/BF01831473
]Search in Google Scholar
[
Saba C.F., Rogers K.S., Newman S.J., Mauldin G.E., Vail D.M. (2007). Mammary gland tumors in male dogs. J. Vet. Intern. Med., 21: 1056–1059.10.1111/j.1939-1676.2007.tb03064.x
]Search in Google Scholar
[
Sadeghi Rad H., Monkman J., Warkiani M.E., Ladwa R., O’Byrne K., Rezaei N., Kulasinghe A. (2021). Understanding the tumor microenvironment for effective immunotherapy. Med. Res. Rev., 41: 1474–1498.10.1002/med.21765
]Search in Google Scholar
[
Salas Y., Márquez A., Diaz D., Romero L. (2015). Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: A growing animal health problem. PloS one, 10: e0127381.10.1371/journal.pone.0127381
]Search in Google Scholar
[
Sánchez-Bermúdez A. I., Sarabia-Meseguer M.D., García-Aliaga Á., Marín-Vera M., Macías-Cerrolaza J.A., Henaréjos P.S., Guardiola-Castillo V., Ayala-de la Peña F., Alonso-Romero J.L., Noguera-Velasco J.A., Ruiz-Espejo F. (2018). Mutational analysis of RAD51C and RAD51D genes in hereditary breast and ovarian cancer families from Murcia (southeastern Spain). Eur. J. Med. Gen., 61: 355–361.10.1016/j.ejmg.2018.01.015
]Search in Google Scholar
[
Sapierzyński R., Czopowicz M., Jagielski D. (2017). Metastatic lymphadenomegaly in dogs–cytological study. Polish J. Vet. Sci., 20: 731–736.
]Search in Google Scholar
[
Schneider B., Balbas-Martinez V., Jergens A.E., Troconiz I.F., Allenspach K., Mochel J.P. (2018). Model-based reverse translation between veterinary and human medicine: The one health initiative. CPT Pharmacomet. Syst. Pharmacol. 7: 65–68.10.1002/psp4.12262
]Search in Google Scholar
[
Schneider R., Dorn C.R., Taylor D.O.N. (1969). Factors influencing canine mammary cancer development and postsurgical survival. J. Natl. Cancer Inst., 43: 1249–1261.
]Search in Google Scholar
[
Shah R., Rosso K., Nathanson S.D. (2014). Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J. Clin. Oncol., 5: 283.10.5306/wjco.v5.i3.283
]Search in Google Scholar
[
Shariat S., Badiee A., Jalali S.A., Mansourian M., Yazdani M., Mortazavi S.A., Jaafari M.R. (2014). P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett., 355: 54–60.10.1016/j.canlet.2014.09.016
]Search in Google Scholar
[
Shosu K., Sakurai M., Inoue K., Nakagawa T., Sakai H., Morimoto M. et al. (2016). Programmed cell death ligand 1 expression in canine cancer. In Vivo, 30: 195–204.
]Search in Google Scholar
[
Siegel R.L., Miller K.D., Jemal A. (2018). Cancer statistics, 2018. CA: A Cancer J. Clin., 68: 7–30.10.3322/caac.21442
]Search in Google Scholar
[
Simon D., Schoenrock D., Baumgärtner W., Nolte I. (2006). Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J. Vet. Intern. Med., 20(5): 1184–1190.10.1111/j.1939-1676.2006.tb00720.x
]Search in Google Scholar
[
Simon D., Schoenrock D., Nolte I., Baumgärtner W., Barron R., Mischke R. (2009). Cytologic examination of fine‐needle aspirates from mammary gland tumors in the dog: diagnostic accuracy with comparison to histopathology and association with postoperative outcome. Vet. Clin. Pathol., 38: 521–528.10.1111/j.1939-165X.2009.00150.x
]Search in Google Scholar
[
Simpson A., Caballero O. (2014). Monoclonal antibodies for the therapy of cancer. BMC Proc., 8: 1–3.10.1186/1753-6561-8-S4-O6
]Search in Google Scholar
[
Singer J., Weichselbaumer M., Stockner T., Mechtcheriakova D., Sobanov Y., Bajna E. et al. (2012). Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting. Mol. Immunol., 50: 200–209.10.1016/j.molimm.2012.01.002
]Search in Google Scholar
[
Sleeckx N., De Rooster H., EJ V.K., Van Ginneken C., Van Brantegem L. (2011). Canine mammary tumours, an overview. Reprod. Domestic Animals = Zuchthygiene, 46: 1112–1131.10.1111/j.1439-0531.2011.01816.x
]Search in Google Scholar
[
Son C.H., Bae J.H., Shin D.Y., Lee H.R., Choi Y.J., Jo W.S. et al. (2014). CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. J. Immunother., 37: 1–7.10.1097/CJI.0000000000000007
]Search in Google Scholar
[
Sontas B.H., Ozyogurtcu H., Gurel A., Ekici H. (2009). Evaluation of clinical and pathological characteristics of 155 canines with mammary tumours: a retrospective study. Arch. Med. Vet., 41: 53–59.10.4067/S0301-732X2009000100007
]Search in Google Scholar
[
Sorenmo K.U., Rasotto R., Zappulli V., Goldschmidt M.H. (2011). Development, anatomy, histology, lymphatic drainage, clinical features, and cell differentiation markers of canine mammary gland neoplasms. Vet. Pathol., 48(1): 85–97.10.1177/0300985810389480
]Search in Google Scholar
[
Sorenmo K.U., Shofer F.S., Goldschmidt M.H. (2000). Effect of spaying and timing of spaying on survival of dogs with mammary carcinoma. J. Vet. Intern. Med., 14: 266–270.10.1111/j.1939-1676.2000.tb01165.x
]Search in Google Scholar
[
Soultani C., Patsikas M.N., Karayannopoulou M., Jakovljevic S., Chryssogonidis I., Papazoglou L. et al. (2017). Assessment of sentinel lymph node metastasis in canine mammary gland tumors using computed tomographic indirect lymphography. Vet. Rad. Ultrasound, 58(2): 186–196.10.1111/vru.12460
]Search in Google Scholar
[
Souza C.H.D.M., Toledo-Piza E., Amorin R., Barboza A., Tobias K.M. (2009). Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can. Vet. J., 50: 506–510.
]Search in Google Scholar
[
Spoerri M., Guscetti F., Hartnack S., Boos A., Oei C., Balogh O. et al. (2015). Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors. BMC Vet. Res., 11: 1–10.10.1186/s12917-015-0546-y
]Search in Google Scholar
[
Steven A., Seliger B. (2018). The role of immune escape and immune cell infiltration in breast cancer. Breast Care, 13: 16–21.10.1159/000486585
]Search in Google Scholar
[
Sultan F., Ganaie B.A. (2018). Comparative oncology: Integrating human and veterinary medicine. Open Vet. J., 8: 25–34.10.4314/ovj.v8i1.5
]Search in Google Scholar
[
Swain S.M., Baselga J., Kim S.B., Ro J., Semiglazov V., Campone M. et al. (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 372: 724–734.10.1056/NEJMoa1413513
]Search in Google Scholar
[
Szczubiał M., Łopuszynski W. (2011). Prognostic value of regional lymph node status in canine mammary carcinomas. Vet. Comp. Oncol., 9: 296–303.10.1111/j.1476-5829.2011.00268.x
]Search in Google Scholar
[
Tavares W.L., Lavalle G.E., Figueiredo M.S., Souza A.G., Bertagnolli A.C., Viana F.A. et al. (2010). Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet. Scand., 52: 1–6.10.1186/1751-0147-52-67
]Search in Google Scholar
[
Turriziani M., Fantini M., Benvenuto M., Izzi V., Masuelli L., Sacchetti P., Modesti A., Bei R. (2012). Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials. Recent Pat. Anti-Cancer Drug Discov., 7: 265–296.10.2174/157489212801820020
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01693562 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT00729664 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01375842 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT00045932 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01772004 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01928394 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01714739 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT02981303 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT04176848 [accessed 20 February 2022].
]Search in Google Scholar
[
US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT04360941 [accessed 20 February 2022].
]Search in Google Scholar
[
Üstün Alkan F., Üstüner O., Bakırel T., Cınar S., Erten G., Deniz G. (2012). The effects of piroxicam and deracoxib on canine mammary tumour cell line. Sci. World J., 2012: 1–8.10.1100/2012/976740
]Search in Google Scholar
[
Valdivia G., Alonso-Diez Á., Pérez-Alenza D., Peña L. (2021). From conventional to precision therapy in canine mammary cancer: A comprehensive review. Front. Vet. Sci., 8: 623800.10.3389/fvets.2021.623800
]Search in Google Scholar
[
Vascellari M., Capello K., Carminato A., Zanardello C., Baioni E., Mutinelli F. (2016). Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Prevent. Vet. Med., 126: 183–189.10.1016/j.prevetmed.2016.02.008
]Search in Google Scholar
[
Verneris M.R., Baker J., Edinger M., Negrin R.S. (2002). Studies of ex vivo activated and expanded CD8+ NK-T cells in humans and mice. J. Clin. Immunol., 22: 131–136.10.1023/A:1015415928521
]Search in Google Scholar
[
Wang Z., Chen J.Q., Liu J.L. (2014). COX-2 inhibitors and gastric cancer. Gastroenterol. Res. Prac., 2014:132320.10.1155/2014/132320
]Search in Google Scholar
[
Wein L., Luen S.J., Savas P., Salgado R., Loi S. (2018). Checkpoint blockade in the treatment of breast cancer: current status and future directions. Br. J. Cancer, 119: 4–11.10.1038/s41416-018-0126-6
]Search in Google Scholar
[
Weiner L.M., Surana R., Wang S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol., 10: 317–327.10.1038/nri2744
]Search in Google Scholar
[
Weir C., Oksa A., Millar J., Alexander M., Kynoch N., Walton-Weitz Z. et al. (2018). The safety of an adjuvanted autologous cancer vaccine platform in canine cancer patients. Vet. Sci., 5(4): 87.10.3390/vetsci5040087
]Search in Google Scholar
[
Yuen S., Yamada K., Goto M., Sawai K., Nishimura T. (2004). CT-based evaluation of axillary sentinel lymph node status in breast cancer: value of added contrast-enhanced study. Acta Radiologica, 45(7): 730–737.10.1080/02841850410001088
]Search in Google Scholar
[
Zabielska-Koczywąs K., Lechowski R. (2017). The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules, 22(12): 2167.10.3390/molecules22122167
]Search in Google Scholar
[
Zappulli V., Peña L., Rasotto R., Goldschmidt M., Gama A., Scruggs J., Kiupel M. (2019). Volume 2: Mammary Tumors. In: Kiupel M., editor. Surgical pathology of tumors of domestic animals. Davis-Thompson DVM Foundation; Washington, DC, USA. pp: 1–195.
]Search in Google Scholar