1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Utilization of unconventional water resources (UWRS) for aquaculture development in arid and semi-arid regions – a review

Published Online: 30 Sep 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 08 Aug 2022
Accepted: 06 Sep 2022
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English

Abate T.G., Nielsen R., Nielsen M., Drillet G., Jepsen P.M., Hansen B.W. (2015). Economic feasibility of copepod production for commercial use: Result from a prototype production facility. Aquaculture, 436: 72–79. Search in Google Scholar

Abatzopoulos T.J., Beardmore, J., Clegg J., Sorgeloos P. (2013). Artemia: basic and applied biology; Springer Science & Business Media: Berlin/Heidelberg, Germany, Volume 1. Search in Google Scholar

Abdel-warith A.A, Younis E.M.I., Al-asgah N.A. (2015). Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus. Saudi J. Biol. Sci., 23: 404–409. Search in Google Scholar

Adewumi A. (2006). The growth and gonadal maturation of the African catfish, Clarias gariepinus (Burchell) broodstock fed differently heated soybean-based diets. Aquac. Nutr., 12: 267–274. Search in Google Scholar

Ahmed A. (2014). An overview of conventional and non-conventional water resources in arid region: assessment and constrains of the United Arab Emirates (UAE). J. Water Resour. Prot., 2(2): 181–190. Search in Google Scholar

Ahmed M., Anwar R. (2012). An assessment of the environmental impact of brine disposal in marine environment. Int. J. Mod. Eng. Res., 2(4): 2756-2761. Search in Google Scholar

Alajmi F., Zeng C., Jerry D. (2015). Domestication as a novel approach for improving the cultivation of Calanoid Copepods: A case study with Parvocalanus crassirostris. PLoS ONE, 10(7): 1–16. Search in Google Scholar

Alghamdi J.A.S. (2019). Alternative water supplies for arid areas. A thesis in the program in environmental health science submitted to the faculty of the school of health sciences and practice in partial fulfillment of the requirements for the degree of Master of Public Health at New York Medical College. 60p. Search in Google Scholar

Bhatnagar A., Devi P. (2013). Water quality guidelines for the management of pond fish culture. Int. J. Environ. Sci., 3(6): 1980-2009. Search in Google Scholar

Blancheton J.P. (2000). Developments in recirculation systems for mediterranean fish species. Aquac. Eng., 22: 17–31. Search in Google Scholar

Brewster M.R., Buros O.K. (1985). The use of non-conventional water resource alternatives in water short areas. Desalination, 56: 89–108. Search in Google Scholar

Buchholz M. (2008). A scenario for the future development of the agricultural and water sector in arid and hyper arid areas. Overcoming Drought, The Cycler Support Implementation Guide. Search in Google Scholar

Cahu C., Infante J.Z., Takeuchi T. (2003). Nutritional components affecting skeletal development in fish larvae. Aquaculture, 227: 245–258. Search in Google Scholar

Camus M., Halelamien N., Plassmann H., Shimojo S., O’Doherty J., Camerer C., Rangel A. (2009). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur. J. Neurosci., 30(10): 1980–1988. Search in Google Scholar

Castine S.A., Erler D.V., Trott L.A., Paul N.A., de Nys R., Eyre B.D. (2012). Denitrification and anammox in tropical aquaculture settlement ponds:an isotope tracer approach for evaluating N2 production. PLoS ONE, 7: e42810 Search in Google Scholar

Castine S.A., McKinnon A.D., Paul N.A., Trott L.A., de Nys R. (2013). Wastewater treatment for land-based aquaculture: improvements and value-adding alternatives in model systems from Australia. Aquacult. Env. Interac., 4: 285–300. Search in Google Scholar

Chen C.Y., Lu I.C., Nagarajan D., Chang C.H., Ng I.S., Lee D.J., Chang J.S. (2018). A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour. Technol., 253: 141–147. Search in Google Scholar

Chiu S.Y., Kao C.Y., Chen T.Y., Chang Y.B. Kuo, C.M., Lin C.S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol., 184: 179–189. Search in Google Scholar

Crespi V., Lovatelli A. (2010). Global desert aquaculture at a glance. Aquaculture in desert and arid lands: development constraints and opportunities, FAO technical workshop. 6–9 July. Hermosillo, Mexico, FAO Fisheries and Aquaculture Proceedings No. 20. FAO, Rome, p.25. Search in Google Scholar

Cripps S.J., Bergheim A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng., 22: 33−56. Search in Google Scholar

Cuaresma M., Casal C., Forján E., Vílchez C. (2011). Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems. J. Ind. Microbiol. Biot., 38: 167–177. Search in Google Scholar

Darre N.C., Toor G.S. (2018). Desalination of water: a review. Curr. Pollut. Rep., 4: 1-8. Search in Google Scholar

Dereli R.K., Ersahin M.E., Gomec C.Y., Ozturk I., Ozdemir O. (2010). Co-digestion of the organic fraction of municipal solid waste with primary sludge at a municipal wastewater treatment plant in Turkey. Waste Manag Res., 28: 404−410. Search in Google Scholar

Dhont J., Dierckens K., Støttrup J., Van Stappen G., Wille M., Sorgeloos P. (2013). Rotifers, artemia and copepods as live feeds for fish larvae in aquaculture. In advances in aquaculture hatchery technology; Allan, G., Burnell, G., Eds.; Woodhead Publishing: Cambridge, UK, pp. 157–202.10.1533/9780857097460.1.157 Search in Google Scholar

Edwards P. (1990). Reuse of human excreta in aquaculture: A state-of-the-art review. Draft report. World Bank, Washington DC. Search in Google Scholar

Edwards P. (2000). Wastewater-fed aquaculture: state of art. In Jana, B.B., Banerjee R.D., Guterstam, B., Heeb, J. (eds) Waste recycling and resource management in the developing world. University of Kalyani, India and International Ecological Engineering Society, Switzerland. pp. 37-49. Search in Google Scholar

Escudero A., Blanco F., Lacalle A., Pinto M. (2014). Ammonium removal from anaerobically treated effluent by Chlamydomonas acidophila. Bioresour. Technol., 153: 62–68.10.1016/j.biortech.2013.11.076 Search in Google Scholar

FAO (2020) The State of World Fisheries and Aquaculture, Nature and Resources. Rome. https://doi.org/10.4060/ca9229en. Search in Google Scholar

FAO. (2014). The State of World Fisheries and Aquaculture. Retrieved from the Food and Agricultural Organization of the United Nations website: http://www.fao.org/ Search in Google Scholar

Fedoroff N.V., Battisti D.S., Beachy R.N., Cooper P.J.M., Fischhoff D.A., Hodges C.N., Knauf V.C., Lobell D., Mazur B.J., Molden D., Reynolds M.P., Ronald P.C., Rosegrant M.W., Sanchez P.A., Vonshak A., Zhu J.K. (2010). Radically rethinking agriculture for the 21st century. Science, 327: 833–834.10.1126/science.1186834 Search in Google Scholar

Frimpong E.A., Lochmann S.E. (2005). Mortality of fish larvae exposed to varying concentrations of cyclopoid copepods. N. Am. J. Aquac., 67(1): 66–71.10.1577/FA03-066.1 Search in Google Scholar

Gajardo, G., Abatzopoulos, T. J., Kappas, I., & Beardmore, J. A. (2002). Evolution and speciation. In T. J. Abatzopoulos, J. A. Beardmore, J. S. Clegg, & P. Sorgeloos (Eds.), Artemia: Basic and applied biology (pp. 225–250). Dordrecht, The Netherlands: Kluwer Academic Publishers.10.1007/978-94-017-0791-6_5 Search in Google Scholar

Gao F., Li C., Yang Z.H., Zeng G.M., Feng L.J., Liu J.Z., Liu M., Cai H.W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol. Eng., 92: 55–61. Search in Google Scholar

Giwa A., Dufour V., Al Marzooqi F., Al Kaabi M., Hasan S.W. (2017). Brine management methods: Recent innovations and current status. Desalination 407:1–23. Search in Google Scholar

Gosling S.N., Arnell N.W. (2016). A global assessment of the impact of climate change on water scarcity. Clim. Chang., 134 (3): 371–385. Search in Google Scholar

Guiry M. (2001). What is Seaweed? http://seaweed.ucg.ie/whatisseaweed.html. Search in Google Scholar

Hagiwara A., Marcial H.S. (2019). The use of non-Brachionus plicatilis species complex rotifer in larviculture. Hydrobiologia, 844: 163–172. Search in Google Scholar

Hammer M.J., Hammer M.J.J. (2008). Water and wastewater technology. Pearson Prentice Hall, Upper Saddle River, NJ. Search in Google Scholar

Helmecke M., Fries E., Schulte C. (2020). Regulating water reuse for agricultural irrigation: risks related to organic micro-contaminants. Environ. Sci. Eur., 32: 4. Search in Google Scholar

Henkanatte-Gedera S.M., Selvaratnam T., Karbakhshravari M., Myint M., Nirmalakhandan N., Voorhies W.V., Lammers P.J. (2017). Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: laboratory to field scale demonstration. Algal Res., 24: 450–456. Search in Google Scholar

Hernández D., Riaño B., Coca M., García-González M.C. (2013). Treatment of agro-industrial wastewater using microalgae– bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour. Technol., 135: 598–603. Search in Google Scholar

Hong G.K., Tew K.S. (2022). The advantages of inorganic fertilization for the mass production of copepods as food for fish larvae in aquaculture. Life, 12: 441. Search in Google Scholar

Hu J., Hu R., Qi D., Lu X. (2017). Study on treatment of aquaculture wastewater using a hybrid constructed wetland. IOP Conf. Ser.: Earth Environ. Sci., 61: 012015. Search in Google Scholar

Hussain M.I., Muscolo A., Farooq M., Ahmad W. (2019). Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag., 221: 462-476. Search in Google Scholar

Indelicato S., Tamburino V., Zimbone S.M. (1993). Unconventional water resource use and management. Ressources en eau: developpement et gestion dans les pays mediterraneens. Bari: CIHEAM, 57-74 Search in Google Scholar

Islam M., Braden J.B. (2006). “Bio-economic development of floodplains: farming versus fishing in Bangladesh. Environ. Dev. Econ., 11(1): 95-126. Search in Google Scholar

Islam M.S. (2008). “From Pond to Plate: Towards a Twin- Driven Commodity Chain in Bangladesh Shrimp Aquaculture. Food Policy, 33(3): 209-223. Search in Google Scholar

Jaber J.O., Mohsen, M.S. (2001). Evaluation of non-conventional water resources supply in Jordan. Desalination, 136 (1–3): 83–92. Search in Google Scholar

Jackson C., Preston N., Thompson P.J. (2004). Intake and discharge nutrient loads at three intensive shrimp farms. Aquacult. Res., 35: 1053−1061. Search in Google Scholar

Jackson C., Preston N., Thompson P.J., Burford M.A. (2003). Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 218: 397−411. Search in Google Scholar

Jana B.B. (1998). Sewage-fed aquaculture: The Calcutta model. Ecol. Eng., 1: 73-85. Search in Google Scholar

Jepsen P.M., Thoisen C.V., Carron-Cabaret T., Pinyol-Gallemí A., Nielsen S.L., Hansen B.W. (2019). Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid copepod Acartia tonsa. J. World Aquac. Soc., 50: 104–118. Search in Google Scholar

Ji L., Wu T., Xie Y., Huang G., Sun L. (2020). A novel two-stage fuzzy stochastic model for water supply management from a water-energy nexus perspective. J. Clean. Prod., 123386. Search in Google Scholar

Jones E., Qadir M., Van Vliet M.T., Smakhtin V., Kang S.M. (2019). The state of desalination and brine production: A global outlook. Sci. Total Environ., 657: 1343–1356. Search in Google Scholar

Kaatz S.E., Morris J.E., Rudacille J.B., Johnson J.A., Clayton R.D. (2011). Role of organic fertilizers in walleye (Sander vitreus) production in plastic-lined culture ponds. Aquac. Res., 42: 490–498. Search in Google Scholar

Kamunde C., Sappal R., Melegy T.M. (2020). Evaluating brown seaweed supplementation in feed for Atlantic salmon smolts. Global Aquaculture Advocate, https://www.globalseafood.org/advocate/evaluating-brown-seaweed-supplementation-in-feed-for-atlantic-salmon-smolts/ Search in Google Scholar

Kang’ombe J., Brown J.A., Halfyard L.C. (2006). Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquac. Res., 37: 1360–1371. Search in Google Scholar

Karimidastenaei Z., Avellán T., Sadegh M., Kløve B., Haghighi A.T. (2022). Unconventional water resources: Global opportunities and challenges. Sci. Total Environ., 827: 154429. Search in Google Scholar

Keshri, J.P., Mukhopadhyay, R. (2012). Algae in medicine. Medicinal plants: Various perspectives. Pub. Department of Botany & Publication Unit, The University of Burdwan. pp. 31-50. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21(4): 1435-1454.10.2478/aoas-2021-0011 Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20(2): 490-513. Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29(1): 307-321.10.1007/s10499-020-00627-9 Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022b). The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., DOI: 10.2478/aoas-2022-0027. Open DOISearch in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383-397.10.1007/s10499-021-00803-5 Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022b). Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., DOI: 10.1002/naaq.10261. Open DOISearch in Google Scholar

Khanjani M.H., Sharifinia M., Hajerezaee S. (2019). An overview of the application and importance of algae in fisheries sciences and food industries. Iranian J. Mar. Sci. Technol., 23 (91): 50-61. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022a). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021 Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022c). Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann. Anim. Sci., DOI: 10.2478/aoas-2022-0044. Open DOISearch in Google Scholar

Khanjani M.H., Zahedi S., Mohammadi A. (2022d). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., DOI, 10.1007/s11356-022-22371-8.35922597 Open DOISearch in Google Scholar

Khanjani M.H., Hajerezaee S. (2020). A Review of the use of unconventional waters in the aquaculture industry. Journal of Water and Wastewater Science and Engineering (JWWSE), 5 (1): 4-13. Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022e). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300.10.1016/j.aqrep.2022.101300 Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M.G.C. (2022f). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562, 738757.10.1016/j.aquaculture.2022.738757 Search in Google Scholar

Kim K., Kim S., Khosravi S., Rahimnejad S., Lee K. (2014). Evaluation of Sargassum fusiforme and Ecklonia cava as dietary additives for Olive flounder (Paralichthys olivaceus). Turkish J. Fish. Aquat. Sci., 330: 321–330. Search in Google Scholar

Kim S., Lee Y., Hwang S.J. (2013a). Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. Int. Biodeter. Biodeg., 85: 511–516.10.1016/j.ibiod.2013.05.025 Search in Google Scholar

Kim S., Park J.E., Cho Y.B., Hwang S.J. (2013b). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol., 144: 8–13.10.1016/j.biortech.2013.06.068 Search in Google Scholar

Lavens P., Sorgeloos P. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, FAO Press, Rome. Search in Google Scholar

León-Vaz A., León R., Díaz-Santos E., Vigara J., Raposo S. (2019). Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol., 51: 31–38. Search in Google Scholar

Li Z., Yu E., Zhang K., Gong W., Xia Y., Tian J., Wang G., Xie J. (2020). Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system. Front. Microbiol., 11: 930. Search in Google Scholar

Lin Y.F., Jing S.R., Lee D.Y., Wang T.W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209: 169–184. Search in Google Scholar

Liu X., Liu Z., Xu H., Gu Z., Zhu H. (2010). Ecological engineering water recirculating ponds aquaculture system. Trans. CSAE., 26: 237–244. Search in Google Scholar

Luo X., Li C., Huang X. (2019). Effect of diet on the development, survival, and reproduction of the calanoid copepod Pseudodiaptomus dubia. J. Oceanol. Limnol., 37: 1756–1767. Search in Google Scholar

Ma W.C.J., Chung H.Y., Ang P.O., Kim J.S. (2005). Enhancement of bromophenol levels in aquacultured Silver seabream (Sparus sarba). J. Agric.Food Chem., 53(6): 2133-2139. Search in Google Scholar

Marinho G., Nunes C., Sousa-Pinto I., Pereira R., Rema P., Valente L.M.P. (2013). The IMTA-cultivated Chlorophyta Ulva spp. as asustainable ingredient in Nile tilapia (Oreochromis niloticus) diets. J. Appl. Phycol., 25: 1359–1367. Search in Google Scholar

Martins C.I.M., Eding E.H., Verdegem M.C.J., Heinsbroek L.T.N., Schneider O., Blancheton J.P., Roque d’Orbcastel E., Verreth J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng., 43: 83-93. Search in Google Scholar

Mitra M., Shah F., Bharadwaj S.V.V., Patidar S.K., Mishra S. (2016). Cultivation of Nannochloropsis oceanica biomass rich in eicosapentaenoic acid utilizing wastewater as nutrient resource. Bioresour. Technol., 218: 1178–1186. Search in Google Scholar

Morari F., Giardini L. (2009). Municipal wastewater treatment with vertical flow constructed wetlands for irrigation reuse. Ecol. Eng., 35: 643−653. Search in Google Scholar

Munoz R., Guieysse B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res., 40: 2799-2815. Search in Google Scholar

Murthy P.M.P., Murthy B.M.S., Kavya S. (2016). Greywater reuse: A sustainable solution for water crisis in bengaluru city, Karnataka, India. Int’l Journal of Research in Chemical, Metallurgical and Civil Engg. (IJRCMCE) 3(1): 77-80. Search in Google Scholar

Naira M., Kumar D. (2013). Water desalination and challenges: The Middle East perspective: a review. Desalin. Water Treat., 51: 2030–2040. Search in Google Scholar

Nakagawa H., Umino T., Tasaka Y. (1997). Usefulness of Ascophyllum meal as a feed additive for Red sea bream, Pagrus major. Aquaculture 151(1): 275-281. Search in Google Scholar

Nazarudin M.F., Yusoff F., Idrus E.S., Aliyu-Paiko M. (2020). Brown seaweed Sargassum polycystum as dietary supplement exhibits prebiotic potentials in Asian sea bass Lates calcarifer fingerlings. Aquac. Rep., 18: 100488. Search in Google Scholar

Negm A.M., Omran E.S.E., Abdel-Fattah S. (2018). Update, conclusions, and recommendations for the “Unconventional Water Resources and Agriculture in Egypt”. Unconventional Water Resources And Agriculture in Egypt. Springer, Cham, pp. 509–532.10.1007/698_2018_336 Search in Google Scholar

Neiland A.E., Soley N. Varley J.B., Whitmarsh D.J. (2001). Shrimp Aquaculture: Economic Perspectives for Policy Development. Mar. Policy, 25(4): 265-279. Search in Google Scholar

Nielsen R., Nielsen M., Abate T., Hansen B., Jepsen P., Nielsen S., Støttrup J., Buchmann K. (2017). The importance of live-feed traps - farming marine fish species. Aquac. Res., 48(6): 2623-2641. Search in Google Scholar

Olivotto I., Piccinetti C.C., Avella M.A., Rubio C.M., Carnevali O. (2010). Feeding strategies for striped blenny Meiacanthus grammistes larvae. Aquac. Res., 41: 307–315. Search in Google Scholar

Pham M.A., Lee K., Lee B., Lim S., Kim S., Lee Y., Heo M., Lee K. (2006). Effects of dietary Hizikia fusiformis on growth and immune responses in juvenile Olive flounder (Paralichthys olivaceus). Asian–Australas J. Anim. Sci., 19(12): 1769.–1775.10.5713/ajas.2006.1769 Search in Google Scholar

Piedrahita R. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35−44.10.1016/S0044-8486(03)00465-4 Search in Google Scholar

Pillay T.V.R. (1992). Aquaculture and the environment. Fishing News Books, Cambridge, Massachusetts USA. Search in Google Scholar

PPK. (2001). Options for the productive use of salinity. National Dryland Salinity Program (www.ndsp.gov.au). Search in Google Scholar

Qadir M., Smakhtin V., Koo-Oshima S., Guenther E. (Editors). 2022. Unconventional Water Resources. Springer Nature Switzerland AG. at Elsevier.10.1007/978-3-030-90146-2 Search in Google Scholar

Quijano G., Arcila J.S., Buitrón G. (2017). Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol. Adv., 35: 772–781. Search in Google Scholar

Rabiei R., Phang S.M., Yeong H.Y., Lim P.E., Ajdari D., Zarshenas G., Sohrabipour J. (2014). Bioremediation efficiency and biochemical composition of Ulva reticula forsskal (Chlorophyta) cultivated in shrimp (Peneaus monodon) hatchery efflueant. Iran. J. Fish. Sci., 13(3): 621-639. Search in Google Scholar

Radhakrishnan D.K., Ali I.A., Schmidt B.V., John E.M., Sivanpillai S., Vasunambesan S.T. (2020). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac. Res., 51(1): 1–17. Search in Google Scholar

Ragaza J.A., Koshio S., Mamauag R.E., Ishikawa M., Yokoyama S.,Villamor S.S. (2015). Dietary supplemental effects of red seaweed Eucheuma denticulatum on growth performance, carcasscomposition and blood chemistry of juvenile Japanese flounder, Paralichthys olivaceus. Aquac. Res., 46: 647–657. Search in Google Scholar

Ramirez-Merida L.G., Zepka L.Q., de Menezes C.R., Jacob-Lopes E. (2015). Microalgae as nanofactory for production of antimicrobial molecules. J. Nanomedic Nanotechnol., S6-004. Search in Google Scholar

Rasdi N.W., Qin J.G. (2018). Copepod supplementation as a live food improved growth and survival of Asian seabass Lates calcarifer larvae. Aquac. Res., 49: 3606–3613. Search in Google Scholar

Roberts D.A., Johnston E.L., Knott N.A. (2010). Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water. Res., 44: 5117-5128. Search in Google Scholar

Sa D.T., Sousa R.R.D., Rocha I.R.C.B., Lima G.C.D., Costa F.H.F. (2013). Brackish shrimp farming in northeastern brazil: the environmental and socio-economic impacts and sustainability, Nat. Resour., 4: 538-550. Search in Google Scholar

Salehi P., Dashti Y., Tajabadi F.M., Sefidkon F., Rabiei R. (2011). Structrual and compositional characteristic of a sulafate galactan from the red algae Gracilariopsis persica. Carbohydr. Polym., 83: 1570-1574. Search in Google Scholar

Sánchez A.S., Nogueira I.B.R., Kalid R.A. (2015). Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination, 364: 96–107. Search in Google Scholar

Sangirova U., Khafizova Z., Yunusov I., Rakhmankulova B., Kholiyorov U. (2020). The benefits of development cage fish farming.E3S Web Conf., 217: 09006. Search in Google Scholar

Schreier H.J., Mirzoyan N., Saito K. (2010). Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol., 21: 318-325. Search in Google Scholar

Shambhulingaiah T.C., Krishnamoorthy E., Gopakumar L.R., Ebeneezar S., Devi H.M., Kasim A.K., Kannaiyan S.K., Vaidhyanathan G., Mathew S. (2021). Valorisation of brown seaweed (Sargassum wightii) waste as a feed ingredient in rohu (Labeo rohita): Effects on growth and metabolism. Aquac. Nutr., 27(6): 2662-2672. Search in Google Scholar

Shapawi R., Zamry A.A. (2016). Response of Asian seabass, Lates calcarifer juvenile fed with different seaweed-based diets. J. Appl. Anim. Res., 44 (1): 121–125. Search in Google Scholar

Sharifinia M., Keshavarzifard M., Hosseinkhezri P., Khanjani M.H., Yap C.K., Smith W.O., Daliri M., Haghshenas A. (2022). The impact assessment of desalination plant discharges on heavy metal pollution in the coastal sediments of the Persian Gulf. Mar. Pollut. Bull., 178: 113599. Search in Google Scholar

Shields R.J., Lupatsch I. (2012). Algae for Aquaculture and Animal Feeds. Technikfolgenabschätzung – Theorie und Praxis 21. Jg., Heft 1, 23-37. Search in Google Scholar

Sidoruk M., Cymes I. (2018). Effect of water management technology used in trout culture on water quality in fish ponds. Water, 10 (9): 126410.3390/w10091264 Search in Google Scholar

Sikoki F.D., Veen J.V. (2012). Aspects of water quality and the potential for fish production of shinro reservour, Nigeria. J. Fish. Aqua. Sci., 8: 186–204. Search in Google Scholar

Silva D.M., Valente L.M.P., Sousa-Pinto I., Pereira R., Pires M.A.,Seixas F. Rema P. (2014). Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growthperformance and gut histology. J. Appl. Phycol., 27: 1671–1680. Search in Google Scholar

Smith M., Veth P., Hiscock P., Wallis L.A. (2008). Global desert in perspective. In: Smith M, Veth P, Hiscock P (eds) Desert peoples: archaeological perspectives. Blackwell Publishing, pp. 1–14 Search in Google Scholar

Soler-Vila A., Coughlan S., Guiry M.D., Kraan S. (2009). The red alga Porphyra dioica as a fish-feed ingredient for Rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. J. Appl. Phycol., 21(5): 617-624. Search in Google Scholar

Sotoudeh E., Jafari M. (2017). Effects of dietary supplementationwith red seaweed, Gracilaria pygmaea, on growth, carcasscomposition and hematology of juvenile rainbow trout, Oncorhynchus mykiss. Aquac. Int., 25: 1857–1867. Search in Google Scholar

Sousa O.V., Macrae A., Menezes F.G.R., Gomes N.C.M., Vieira R.H.S.F., Mendonça-Hagler, L.C.S. (2006). The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil. Mar. Pollut. Bull., 52(12): 1725-1734. Search in Google Scholar

Stoyneva-Gärtner M.P., Uzunov B.A. (2015). An ethno biological glance on globalization impact on the traditional use of algae and fungi as food in Bulgaria. J Nutr Food Sci., 5: 413. Search in Google Scholar

Strauss M. (1985). Pathogen survival, Part II., health aspects of nightsoil and sludge use in agriculture and aquaculture, IRCWD Report No. 04/85. International Reference Centre for Waste Disposal, Dubendorf, Switzerland. Search in Google Scholar

Summerfelt S.T., Sharrer M.J., Tsukuda S.M., Gearheart M. (2009). Process requirements for achieving full-flow disinfection of recirculating water using ozonation and UV irradiation. Aquac. Eng., 40: 17−27. Search in Google Scholar

Summerfelt S.T., Wilton G., Roberts D., Rimmer T., Fonkalsrud K. (2004). Developments in recirculating systems for Arctic char culture in North America. Aquac. Eng., 30: 31-71. Search in Google Scholar

Tal Y., Schreier H.J., Sowers K.R., Stubblefield J.D., Place A.R., Zohar, Y. (2009). Environmentally sustainable land-based marine aquaculture. Aquaculture, 286: 28–35. Search in Google Scholar

Tew K.S., Chang Y.C., Meng, P.J., Leu M.Y., Glover D.C. (2016). Towards sustainable exhibits– application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquac. Res., 47: 2748–2756. Search in Google Scholar

Thépot V., Campbell A.H., Rimmer M.A., Paul N.A. (2021). Effects of a seaweed feed inclusion on different life stages of the mottled rabbitfish Siganus fuscescens. Aquac. Res., 52(12): 6626-6640. Search in Google Scholar

Thi N., Anh N., Nevejan N., Bossier P. (2015). Seaweed, Enteromorpha intestinalis, as a diet for Nile tilapia Oreochromis niloticus fry. J. Appl. Aquac., 27: 113–123. Search in Google Scholar

Troell M. (2009). Integrated marine and brackishwater aquaculture in tropical regions: research, implementation and prospects. In D. Soto (ed.). Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. Rome, FAO. pp. 47–131. Search in Google Scholar

Valente L.M.P., Gouveia A., Rema P., Matos J., Gomes E.F., Pinto I.S. (2006). Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252(1): 85-91. Search in Google Scholar

Vazirzadeh A., Marhamati A., Chisti Y. (2022). Seaweed-based diets lead to normal growth, improved fillet color but a down-regulated expression of somatotropic axis genes in rainbow trout (Oncorhynchus mykiss). Aquaculture, 554: 738183. Search in Google Scholar

Wan A.H.L., Soler-Vila A., O’Keeffe D., Casburn P., Fitzgerald R., Johnson M.P. (2016). The inclusion of Palmaria palmate macroalgae in Atlantic salmon (Salmo salar) diets: effects ongrowth, haematology, immunity and liver function. J. Appl. Phycol., 28: 3091–3100. Search in Google Scholar

Woertz I., Feffer A., Lundquist T., Nelson Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ. Eng., 135: 1115−1122. Search in Google Scholar

Wollmann F., Dietze S., Ackermann J.U., Bley T., Walther T., Steingroewer J., Krujatz F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Eng. Life Sci.,19: 860–871. Search in Google Scholar

World Health Organization (WHO). (1989). Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report No. 778. WHO, Geneva 74 p. Search in Google Scholar

Yangthong M., Ruensirikul J., Kaneko G. (2022). The Hot-Water Extract of Sargassum sp. as a Feed Ingredient for Spotted Scat (Scatophagus argus Linnaeus, 1766) Reared in Songkhla Lake: Effects on Growth, Feed Efficiency, Hematological Data and Body Composition. Fishes, 7(4): 170; https://doi.org/10.3390/fishes7040170. Search in Google Scholar

Yazdandoost F., Noruzi M.M., Yazdani S.A. (2021). Sustainability assessment approaches based on water-energy Nexus: fictions and nonfictions about non-conventional water resources. Sci. Total Environ., 758: 143703. Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97, 101856.10.1016/j.hal.2020.101856 Search in Google Scholar

Zeng C., Shao L., Ricketts A., Moorhead J. (2018). The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture, 491: 65–71. Search in Google Scholar

Zhai J., Li X., Li W., Rahaman M.H. Zhao Y., Wei B., Wei H., (2017). Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol. Eng., 108: 83–92. Search in Google Scholar

Zhang S., Ban Y., Xu Z., Cheng J., Li M. (2016). Comparative evaluation of influencing factors on aquaculture wastewater treatment by various constructed wetlands. Ecol. Eng., 93: 221–225. Search in Google Scholar

Zhang S.Y., Li G., Wu H.B., Liu X.G., Yao Y.H., Tao L., Liu H. (2011). An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng., 45: 93-102. Search in Google Scholar

Zhong F., Gao Y. N., Yu T., Zhang Y., Xu D., Xiao E., He F., Zhou Q., Wu Z. (2011). The management of undesirable cyanobacteria blooms in channel catfish ponds using a constructed wetland: contribution to the control of off flavor occurrences. Water. Res., 45: 6479–6488. Search in Google Scholar

Zohar Y., Tal Y., Schreier H.J., Steven C., Stubblefield J., Place A. (2005). Commercially feasible urban recirculated aquaculture: addressing the marine sector. In B. Costa-Pierce (Ed.), Urban Aquaculture (pp. 159-171). Cambridge, MA:CABI Publishing. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo