[Aura A-M., Mattila I., Hyötyläinen T., Gopalacharyulu P., Bounsaythip C., Orešič M., Oksman-Caldentey K-M. (2011). Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro. Mol. Biosyst., 7: 437–446.]Search in Google Scholar
[Bergman P., Linde C., Pütsep K., Pohanka A., Normark S., Henriques-Normark B., Andersson J., Björkhem-Bergman L. (2011). Studies on the antibacterial effects of statins – in vitro and in vivo. PLoS One, 6: e24394.]Search in Google Scholar
[Candyrine S.C.L., Mahadzir M.F., Garba S., Jahromi M.F., Ebrahimi M., Goh Y.M., Samsudin A.A., Sazili A.Q., Chen W.L., Ganesh S., Ronimus R., Muetzel S., Liang J.B. (2018). Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period. PLoS One, 13: e0199840.]Search in Google Scholar
[Faseleh Jahromi M., Liang J.B., Mohamad R., Goh Y.M., Shokryazdan P., Ho Y.W. (2013). Lovastatin-enriched rice straw enhances biomass quality and suppresses ruminal methanogenesis. Biomed Res. Int., 397934: 1–13.]Search in Google Scholar
[Gottlieb K., Wacher V., Sliman J., Pimentel M. (2016). Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment. Pharmacol. Ther., 43: 197–212.]Search in Google Scholar
[Henderson G., Cook G.M., Ronimus R.S. (2018). Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Anim. Prod. Sci., 58: 1017–1026.]Search in Google Scholar
[Janssen P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol., 160: 1–22.]Search in Google Scholar
[Joch M., Kudrna V., Hakl J., Božik M., Homolka P., Illek J., Tyrolová Y., Výborná A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim. Feed Sci. Technol., 251: 176–186.]Search in Google Scholar
[Lippi G., Mattiuzzi C., Cervellin G. (2019). Statins popularity: A global picture. Br. J. Clin. Pharmacol., 85: 1614–1615.]Search in Google Scholar
[Liu Y., Whitman W.B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci., 1125: 171–189.]Search in Google Scholar
[López S., Newbold C.J. (2007). Analysis of methane. In: Measuring methane production from ruminants, Makkar H.P.S., Vercoe P.E. (eds). Springer, Dordrecht, The Netherlands. pp. 1–13.]Search in Google Scholar
[Masadeh M., Mhaidat N., Alzoubi K., Al-Azzam S., Alnasser Z. (2012). Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann. Clin. Microbiol. Antimicrob., 11: 13.]Search in Google Scholar
[Miller T.L., Wolin M.J. (2001). Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl~SCoA reductase inhibitors. J. Dairy Sci., 84: 1445–1448.]Search in Google Scholar
[Morgavi D.P., Martin C., Boudra H. (2013). Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. J. Anim. Sci., 91: 848–860.]Search in Google Scholar
[Nkamga V.D., Armstrong N., Drancourt M. (2017). In vitro susceptibility of cultured human methanogens to lovastatin. Int. J. Antimicrob. Agents, 49: 176–182.]Search in Google Scholar
[Patra A.K., Yu Z. (2014). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl. Microbiol. Biotechnol., 98: 897–905.]Search in Google Scholar
[Patra A., Park T., Kim M., Yu Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol., 8: 13.]Search in Google Scholar
[Ramírez-Restrepo C.A., O’Neill C.J., López-Villalobos N., Padmanabha J., Mc Sweeney C. (2014). Tropical cattle methane emissions: the role of natural statins supplementation. Anim. Prod. Sci., 54: 1294–1299.]Search in Google Scholar
[Sharma A., Chaudhary P.P., Sirohi S.K., Saxena J. (2011). Structure modeling and inhibitor prediction of NADP oxidoreductase enzyme from Methanobrevibacter smithii. Bioinformation, 6: 15–19.]Search in Google Scholar
[Sirtori C.R. (2014). The pharmacology of statins. Pharmacol. Res., 88: 3–11.]Search in Google Scholar
[Soliva C.R., Amelchanka S.L., Duval S.M., Kreuzer M. (2011). Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr., 106: 114–122.]Search in Google Scholar
[Theodorou M.K., Williams B.A., Dhanoa M.S., Mc Allan A.B., France J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48: 185–197.]Search in Google Scholar
[Wang Y., Nichol M.B., Yan B.P., Wu J., Tomlinson B., Lee V.W. (2019). Descriptive analysis of real-world medication use pattern of statins and antiplatelet agents among patients with acute coronary syndrome in Hong Kong and the USA. BMJ Open, 9: e024937.]Search in Google Scholar
[Weatherburn M.W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971–974.]Search in Google Scholar
[Wolin M.J., Miller T.L. (2006). Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. Int. Congr. Ser., 1293: 131–137.]Search in Google Scholar
[Xiong Z., Cao X., Wen Q., Chen Z., Cheng Z., Huang X., Zhang Y., Long C., Zhang Y., Huang Z. (2019). An overview of the bioactivity of monacolin K/lovastatin. Food Chem. Toxicol., 131: 110585.]Search in Google Scholar
[Yang D.-J., Hwang L.S. (2006). Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J. Chromatogr. A, 1119: 277–284.]Search in Google Scholar