1. bookVolume 21 (2021): Issue 2 (April 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

A new pectinase produced from Aspergillus terreus compared with a commercial pectinase enhanced feed digestion, milk production and milk fatty acid profile of Damascus goats fed pectin-rich diet

Published Online: 08 May 2021
Volume & Issue: Volume 21 (2021) - Issue 2 (April 2021)
Page range: 639 - 656
Received: 20 Jun 2020
Accepted: 23 Jul 2020
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Pectinase hydrolyses pectin and increases the utilization of agriculture byproducts as feeds for ruminants. A newly developed pectinase from Aspergillus terreus was compared with a commercially available pectinase at 600 IU/kg feed on feed utilization and lactational performance of Damascus goat fed orange pulp and sugar beet pulp based diet (i.e., pectin-rich diet) for 12 weeks. Thirty (one week postpartum) Damascus goats stratified by previous milk production, body weight and parity were divided into three experimental groups. Does were fed a basal diet containing concentrates, orange silage, sugar beet pulp and wheat straw at 50:20:20:10, respectively without a supplement (control treatment) or supplemented with a newly developed pectinase (New treatment) or commercial pectinase (Commercial treatment). With similar (P>0.05) feed intake, the new pectinase increased (P<0.01) nutrient digestibility and milk production efficiency more than the other treatments. Out of all the blood parameters, only serum glucose was affected by the treatments with highest (P=0.025) value noted for the new pectinase. Similarly, the new pectinase increased daily milk production (P<0.005) and the concentrations of milk components compared to the other two treatments. Additionally, pectinase (both the commercial and new) inclusion increased (P<0.05) the concentrations of total conjugated linoleic acid and unsaturated/saturated fatty acids ratio, and decreased atherogenic index (P=0.01) compared with control treatment. It is concluded that the supplementation of the diet of lactating goats with pectinase at 600 IU/kg feed will enhance feed digestion and milk production. The newly developed pectinase performed better than the commercial pectinase.


Abd El Tawab A. M., Kholif A. E., Hassan A. M., Matloup O. H., Abo El-Nor S. A., Olafadehan O. A., Khattab M. S. A. (2020). Feed utilization and lactational performance of Friesian cows fed beet tops silage treated with lactic acid bacteria as a replacement for corn silage. Anim. Biotechnol., 31: 473–482. Search in Google Scholar

Abedi E., Sahari M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2: 443–463. Search in Google Scholar

Aboul-Fotouh G. E., El-Garh G. M., Azzaz H. H., Abd El-Mola A. M., Mousa G. A. (2016). Fungal cellulase production optimization and its utilization in goat’s rations degradation. Asian J. Anim. Vet. Adv., 1: 824–831. Search in Google Scholar

Alnaimy A. (2017). Using of citrus by-products in farm animals feeding. Open Access J. Sci., 1: 57–68. Search in Google Scholar

Alsersy H., Salem A.Z.M., Borhami B.E., Olivares J., Gado H.M., Mariezcurrena M.D., Yacuot M. H., Kholif A. E., El-Adawy M., Hernandez S. R. (2015). Effect of Mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Anim. Sci. J., 86: 51–58. Search in Google Scholar

Amin F., Bhatti H. N., Bilal M. (2019). Recent advances in the production strategies of microbial pectinases – A review. Int. J. Biol. Macromol., 122: 1017–1026. Search in Google Scholar

AOAC (1997). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. Search in Google Scholar

Azzaz H.H., Murad H.A., Kholif A.M., Morsy T.A., Mansour A.M., El-Sayed H.M. (2013). Increasing nutrients bioavailability by using fibrolytic enzymes in dairy buffaloes feeding. J. Biol. Sci., 13: 234–241. Search in Google Scholar

Azzaz H. H., Aboamer A. A., Alzahar H., Abdo M. M., Murad H. A. (2019). Effect of xylanase and phytase supplementation on goat’s performance in early lactation. Pakistan J. Biol. Sci., 22: 265–272. Search in Google Scholar

Azzaz H. H., Aboamer A. A., Alzahar H., Hassaan N. A., Murad H.A. (2020 a). Effect of cellulases supplementation on milk yield and feed utilization by Baladi goats in early lactation. Int. J. Dairy Sci. 15, 48–53.10.3923/ijds.2020.48.53 Search in Google Scholar

Azzaz H. H., Murad H. A., Hassaan N. A., Fahmy M. (2020 b). Pectinase production optimization for improving dairy animal’s diets degradation. Int. J. Dairy Sci., 15: 54–61.10.3923/ijds.2020.54.61 Search in Google Scholar

Beauchemin K.A., Colombatto D., Morgavi D.P., Yang W.Z., Rode L.M. (2004). Mode of action of exogenous cell wall degrading enzymes for ruminants. Can. J. Anim. Sci., 84: 13–22. Search in Google Scholar

Boyd J. W. (1984). The interpretation of serum biochemistry test results in domestic animals. Vet. Clin. Pathol., 13: 7–14. Search in Google Scholar

Buga M. L., Ibrahim S., Nok A. J. (2010). Partially purified polygalacturonase from Aspergillus niger (SA6). African J. Biotechnol., 9: 8944–8954. Search in Google Scholar

Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J., Chávez-Martínez A. (2014). Rumen microorganisms and fermentation. Arch. Med. Vet., 46: 349–361. Search in Google Scholar

Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12: 622–630. Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L. M., Márquez O., Salem A. Z. M. (2016). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci., 61: 262–272. Search in Google Scholar

Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res., 33: 145–152. Search in Google Scholar

Fredeen A. H. (1996). Considerations in the nutritional modification of milk composition. Anim. Feed Sci. Technol., 59: 185–197. Search in Google Scholar

Gaines W. L. (1928). The energy basis of measuring milk yield in dairy cows. Illinois Agric. Exp. Stn. Bull., pp. 403–438. Search in Google Scholar

Giraldo L. A., Tejido M. L., Ranilla M. J., Ramos S., Carro M. D. (2008). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci., 86: 1617–1623. Search in Google Scholar

Khattab H. M., Gado H. M., Salem A. Z. M., Camacho L. M., El-Sayed M. M., Kho-lif A. M., El-Shewy A. A., Kholif A. E. (2013). Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol., 13: 507–516. Search in Google Scholar

Kholif A.E., Khattab H.M., El-Shewy A.A., Salem A.Z.M., Kholif A.M., El-Sa-yed M. M., Gado H. M., Mariezcurrena M. D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian-Australas. J. Anim. Sci., 27: 357–364. Search in Google Scholar

Kholif A. E., Abdo M. M., Anele U. Y., El-Sayed M. M., Morsy T.A. (2017 a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23.10.1016/j.livsci.2017.10.002 Search in Google Scholar

Kholif A.E., Elghandour M.M.Y., Rodríguez G.B., Olafadehan O.A., Salem A.Z.M. (2017 b). Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod., 142: 2649–2655.10.1016/j.jclepro.2016.11.012 Search in Google Scholar

Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G., El-Sayed A.B. (2017 c). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci., 155: 508–518.10.1017/S0021859616000824 Search in Google Scholar

Kholif A. E., Gouda G. A., Olafadehan O. A., Abdo M.M. (2018 a). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S175173111700233628988560 Search in Google Scholar

Kholif A. E., Kassab A. Y., Azzaz H. H., Matloup O. H., Hamdon H. A., Olafade-han O. A., Morsy T. A. (2018 b). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011 Search in Google Scholar

Kholif A. E., Gouda G. A., Galyean M. L., Anele U. Y., Morsy T. A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst., 93: 1877–1886. Search in Google Scholar

Kim Y. J., Ki W. L., Hyong J. L. (2003). Increase of conjugated linoleic acid level in milk fat by bovine feeding regimen and urea fractionation. J. Microbiol. Biotechnol., 13: 22–28. Search in Google Scholar

Knowlton K. F. F., Mc Kinney J. M. M., Cobb C. (2002). Effect of a direct-fed fibrolytic enzyme formulation on nutrient intake, partitioning, and excretion in early and late lactation Holstein cows. J. Dairy Sci., 85: 3328–3335. Search in Google Scholar

Morsy T. A., Kholif A. E., Kholif S. M., Kholif A. M., Sun X., Salem A. Z. M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Ann. Anim. Sci., 16: 209–222. Search in Google Scholar

Murad H. A., Azzaz H. H. (2011). Microbial pectinases and ruminant nutrition. Res. J. Microbiol., 6: 246–269. Search in Google Scholar

NRC (2007). Nutrient Requirements for Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, DC, USA. Search in Google Scholar

NRC (2001). Nutrient Requirements of Dairy Cattle, 7th ed. National Academies Press, Washington, D.C., USA. Search in Google Scholar

Olafadehan O.A., Okunade S.A., Njidda A.A., Kholif A.E., Kolo S.G., Alagbe J.O. (2020). Concentrate replacement with Daniellia oliveri foliage in goat diets. Trop. Anim. Health Prod., 2: 227–233. Search in Google Scholar

Palmquist D. L. (2006). Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon. In: Advanced Dairy Chemistry, Fox P.F., McSweeney P.L.H. (eds). Volume 2 Lipids. Springer US, Boston, MA, pp. 43–92.10.1007/0-387-28813-9_2 Search in Google Scholar

Pettersson J., Hindorf U., Persson P., Bengtsson T., Malmqvist U., Werks-tröm V., Ekelund M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. Br. J. Clin. Pharmacol., 65: 253–259. Search in Google Scholar

Rojo R., Kholif A. E., Salem A. Z. M., Elghandour M. M. Y., Odongo N. E., Montesde Oca R., Rivero N., Alonso M. U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. J. Agric. Sci., 153: 1514–1523. Search in Google Scholar

Salem A. Z. M., Alsersy H., Camacho L. M., El-Adawy M. M., Elghandour M. M. Y., Kholif A. E., Rivero N., Alonso M. U., Zaragoza A. (2016). Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech J. Anim. Sci., 60: 185–194. Search in Google Scholar

Sales J., Janssens G. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci., 12: 383–401. Search in Google Scholar

Shelukhina N. P., Fedichkina L. G. (1994). A rapid method for quantitative determination of pectic substances. Acta Bot. Neerl., 43: 205–207. Search in Google Scholar

Sjaunja L.O., Baevre L., Junkkarinen L., Pedersen J., Setala J. (1991). A Nordic proposal for an energy corrected milk (ECM) formula: performance recording of animals. State of the art. EAAP Publ., 50: 156–157. Search in Google Scholar

Togtokhbayar N., Cerrillo M.A., Rodríguez G.B., Elghandour M.M.Y., Salem A.Z.M., Urankhaich C., Jigjidpurev S., Odongo N.E., Kholif A.E. (2015). Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Anim. Sci. J., 86: 765–771. Search in Google Scholar

Tyrrell H. F., Reid J. T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci., 48: 1215–1223. Search in Google Scholar

Ulbricht T. L. V., Southgate D. A. T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338: 985–992. Search in Google Scholar

Vallejo L. H., Salem A. Z. M., Kholif A. E., Elghangour M. M. Y., Fajardo R. C., Rive-ro N., Bastida A. Z., Mariezcurrena M. D. (2016). Influence of cellulase or xylanase on the in vitro rumen gas production and fermentation of corn stover. Indian J. Anim. Sci., 86: 70–74. Search in Google Scholar

Van Soest P. J., Robertson J. B., Lewis B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo