1. bookVolume 20 (2020): Issue 4 (October 2020)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Insect Fat in Animal Nutrition – A Review

Published Online: 07 Nov 2020
Volume & Issue: Volume 20 (2020) - Issue 4 (October 2020)
Page range: 1217 - 1240
Received: 01 Jun 2020
Accepted: 13 Jul 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this review is to discuss the usage of insect fats as an energy source in animal nutrition. Insects are a rich carrier of proteins, fat, and minerals. They are successfully introduced in animal diets (poultry, swine, rabbits, fish, and pets) as a source of many nutrients, including energy and essential fatty acids (FAs). The insects’ fat content and quality are highly affected by the type of substrate provided to the insects during the rearing period. The majority of the studies have shown that insect fats may be used as promising substitutes for conventional energy resources in animal nutrition without adverse effects on growth performance and feed utilization. They can positively affect meat quality by increasing the level of long-chain polyunsaturated FAs but may also positively influence animals by regulating the gut microbiota and stimulating the immune system. In conclusion, insect fat supplementation showed promising results in terms of their application in animal nutrition. However, compared to insect protein application, very few studies have been performed on insect fats. Therefore, because of the fat quality and content of insects, there is a need to extend experimentation regarding their implementation in animals’ diets as a replacement for conventional dietary energy resources.

Keywords

Adámek M., Mlček J., AdámkováA., BorkovcováM., BednářováM., MusilováZ., Skácel J., Sochor J., Faměra O.(2019). Unusual aspects of the fat content of mealworm larvae as a novel food. Potr. Slovak J. Food Sci., 13: 157–162.Search in Google Scholar

AdámkováA., KouřimskáL., BorkovcováM., Kulma M., Mlček J.(2016). Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo, 10: 663–671.Search in Google Scholar

AdámkováA., Mlček J., KouřimskáL., BorkovcováM., Bušina T., Adámek M., BednářováM., Krajsa J.(2017). Nutritional potential of selected insect species reared on the island of Sumatra. Int. J. Environ. Res. Public Health, 14: 521.Search in Google Scholar

Alifian M.D., Sholikin M.M., Evvyernie D.(2019). Potential fatty acid composition of Hermetia illucens oil reared on different substrates. In IOP Conference Series: Materials Science and Engineering. IOP Publishing. 546: 062002.Search in Google Scholar

Alves A.V., Sanjinez-Argandoña E.J., Linzmeier A.M., Cardoso C.A.L., Macedo M.L.R.(2016). Food value of mealworm grown on Acrocomia aculeata pulp flour. PLoS One, 14: 11.Search in Google Scholar

Arrese E.L., Soulages J.L.(2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol., 55: 207–225.Search in Google Scholar

Bailey E.(1975). Biochemistry of insect flight: fuel supply. In: Insect Biochemistry and Function. London, The UK, Chapman & Hall, pp. 89–176.Search in Google Scholar

Barker D., Fitzpatrick M.P., Dierenfeld E.S.(1998). Nutrient composition of selected whole invertebrates. Zoo Biol., 17: 123–134.Search in Google Scholar

Barragan-Fonseca K.B., Dicke M., van Loon J.J.(2018). Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl., 166: 761–770.Search in Google Scholar

Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C.(2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.Search in Google Scholar

Barroso F.G., Sánchez-Muros M.J., Segura M., Morote E., Torres A., Ramos R., Guil J.L.(2017). Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compost. Anal., 62: 8–13.Search in Google Scholar

Belghit I., Liland N.S., WaagbøR., Biancarosa I., Pelusio N., Li Y., KrogdahlÅ., Lock E.J.(2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.Search in Google Scholar

Benzertiha A., Kierończyk B., Rawski M., Kołodziejski P., Bryszak M., Józefiak D.(2019). Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals, 9: 1–16.Search in Google Scholar

Canavoso L.E., Jouni Z.E., Karnas K.J., Pennington J.E., Wells M.A.(2001). Fat metabolism in insects. Annu. Rev. Nutr., 21: 23–46.Search in Google Scholar

Chapman R.F.(1998). The Insects: Structure and Function. Cambridge University Press: Cambridge, UK, 4th ed., pp. 1–770.10.1017/CBO9780511818202Search in Google Scholar

Chen H., Tian J., Wang Y., Yang K., Ji H., Li J.(2017). Effects of dietary soybean oil replacement by silkworm, Bombyx mori L., chrysalis oil on growth performance, tissue fatty acid composition, and health status of juvenile Jian carp, Cyprinus carpio var. Jian. J. World Aquac. Soc., 48: 453–466.Search in Google Scholar

Chieco C., Morrone L., Bertazza G., Cappellozza S., Saviane A., Gai F., Di Virgilio N., Rossi F.(2019). The effect of strain and rearing medium on the chemical composition, fatty acid profile and carotenoid content in silkworm (Bombyx mori) pupae. Animals, 9: 103.Search in Google Scholar

Cullere M., Tasoniero G., Giaccone V., Miotti-Scapin R., Claeys E., De Smet S., Dalle Zotte A.(2016). Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10: 1923–1930.Search in Google Scholar

Cullere M., Tasoniero G., Giaccone V., Acuti G., Marangon A., Dalle Zotte A.(2017). Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal, 12: 640–647.Search in Google Scholar

Cullere M., Schiavone A., Dabbou S., Gasco L., Dalle Zotte A.(2019a). Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals, 9: 140.10.3390/ani9040140652376430986996Search in Google Scholar

Cullere M., Woods M.J., van Emmenes L., Pieterse E., Hoffman L.C., Dalle Zotte A.(2019b). Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on physicochemical and sensory quality of the quail meat. Animals, 9: 525.10.3390/ani9080525672097231382479Search in Google Scholar

Dalle Zotte A., Cullere M., Martins C., Alves S.P., Freire J.P., Falcão-e-Cunha L., Bessa R.J.(2018). Incorporation of Black Soldier Fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci., 146: 50–58.Search in Google Scholar

Dalle Zotte A., Singh Y., Michiels J., Cullere M.(2019). Black soldier fly (Hermetia illucens) as dietary source for laying quails: live performance, and egg physico-chemical quality, sensory profile and storage stability. Animals, 9: 115.Search in Google Scholar

Danieli P.P., Lussiana C., Gasco L., Amici A., Ronchi B.(2019). The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals, 9: 178.Search in Google Scholar

Dayrit F.M.(2014). Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philipp. J. Sci., 143: 157–166.Search in Google Scholar

Dayrit F.M.(2015). The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc., 92: 1–15.Search in Google Scholar

De Lany J.P., Windhauser M.M., Champagne C.M., Bray G.A.(2000). Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr., 72: 905–911.Search in Google Scholar

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V.(2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.Search in Google Scholar

Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E.(2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.Search in Google Scholar

Ekpo K.E., Onigbinde A.O., Asia I.O.(2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. Afr. J. Pharm. Pharmacol., 3: 51–57.Search in Google Scholar

Ewald N., Vidakovic A., Langeland M., Kiessling A., Sampels S., Lalander C.(2020). Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Manag., 102: 40–47.Search in Google Scholar

Finke M.D.(2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol., 21: 269–285.Search in Google Scholar

Finke M.D.(2015). Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol., 34: 554–564.Search in Google Scholar

Fontaneto D., Tommaseo-Ponzetta M., Galli C., RiséP., Glew R.H., Paoletti M.G.(2011). Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr., 50: 351–367.Search in Google Scholar

Francardi V., Cito A., Fusi S., Botta M., Dreassi E.(2017). Linseed to increase n-3 fatty acids in Tenebrio molitor (Coleoptera Tenebrionidae). Redia, 100: 73–76.Search in Google Scholar

Gasco L., Finke M., Van Huis A.(2018). Can diets containing insects promote animal health? J. Insects Food Feed, 4: 1–4.Search in Google Scholar

Gasco L., Dabbou S., Gai F., Brugiapaglia A., Schiavone A., Birolo M., Xiccato G., Trocino A.(2019a). Quality and consumer acceptance of meat from rabbits fed diets in which soybean oil is replaced with black soldier fly and yellow mealworm fats. Animals, 9: 629.10.3390/ani9090629677049031470627Search in Google Scholar

Gasco L., Dabbou S., Trocino A., Xiccato G., Capucchio M.T., Biasato I., Dezzutto D., Birolo M., Meneguz M., Schiavone A., Gai F.(2019b). Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol., 10: 4. doi. https://doi.org/10.1186/s40104-018-0309-2.10.1186/s40104-018-0309-2633783730675348Search in Google Scholar

Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F.(2019c). Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals, 9: 170.10.3390/ani9040170652361930995783Search in Google Scholar

Harlystiarini H., Mutia R., Wibawan I.W.T., Astuti D.A.(2020). Immune responses and egg productions of quails fed rations supplemented with larvae meal of black soldier fly (Hermetia illucens). Trop. Life Sci. Res., 43: 43–49.Search in Google Scholar

Heuel M., Sandrock C., Mathys A., Gold M., Zurbrügg C., Kreuzer M., Terranova M.(2019). Performance of laying hens when replacing soybean cake and oil by insect larval protein meal and fat. In: EAAP Scientific Series, The Netherlands, Wageningen Academic Publishers, 83–90 pp.Search in Google Scholar

Heugten E.V., Martinez G., Mc Comb A., Koutsos E.(2019). Black soldier fly (Hermetia illucens) larvae oil improves growth performance of nursery pigs. J. Anim. Sci., 97: 118–118.Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S,. Mazurkiewicz J.(2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598.Search in Google Scholar

Iaconisi V., Marono S., Parisi G., Gasco L., Genovese L., Maricchiolo G., Bovera F., Piccolo G.(2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476: 49–58.Search in Google Scholar

James N.(2019). Southeast Asia’s formula for top ornamental fish. Farmer’s Weekly. 2019: 28–28.Search in Google Scholar

Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J.(2019a). The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765.10.2478/aoas-2019-0020Search in Google Scholar

Józefiak A., Nogales-Mérida S., Rawski M., Kierończyk B., Mazurkiewicz J.(2019b). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res., 15: 348.10.1186/s12917-019-2070-y679850931623627Search in Google Scholar

Jucker C., Erba D., Leonardi M.G., Lupi D., Savoldelli S.(2017). Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol., 46: 1415–1423.Search in Google Scholar

Kasumyan A.(2018). Olfaction and gustation in Acipenseridae, with special references to the Siberian sturgeon. In: The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 – Biology. New York, Springer-Verlag, pp. 173–205.10.1007/978-3-319-61664-3_10Search in Google Scholar

Khatibjoo A., Mahmoodi M., Fattahnia F., Akbari-Gharaei M., Shokri A.N., Soltani S.(2018). Effects of dietary short-and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. J. Appl. Anim. Res., 46: 492–498.Search in Google Scholar

Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D.(2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.Search in Google Scholar

Kierończyk B., Sypniewski J., Rawski M., Czekała W., Świątkiewicz S., Józefiak D.(2020). From waste to sustainable feed material: the effect of Hermetia illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci., 20: 157–177.Search in Google Scholar

Kim S.W., Jung T.S., Ha Y.J., Gal S.W., Noh C.W., Kim I.S., Lee J.H., Yoo J.H.(2019). Removal of fat from crushed black soldier fly larvae by carbon dioxide supercritical extraction. J. Anim. Feed Sci., 28: 83–88.Search in Google Scholar

Kim Y.B., Kim D.H., Jeong S.B., Lee J.W., Kim T.H., Lee H.G., Lee K.W.(2020). Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poultry Sci., doi: https://doi.org/10.1016/j.psj.2020.01.018.10.1016/j.psj.2020.01.018759763732475450Search in Google Scholar

Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H.(2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.Search in Google Scholar

Liland N.S., Biancarosa I., Araujo P., Biemans D., Bruckner C.G., WaagbøR., Torstensen B.E., Lock E.J.(2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PloS One, 12: e0183188.Search in Google Scholar

Liu X., Chen X., Wang H., Yang Q., ur Rehman K., Li W., Cai M., Li Q., Mazza L., Zhang J., Yu Z., Zheng L.(2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One, 12(8), e0182601.10.1371/journal.pone.0182601555216428796830Search in Google Scholar

Lorenz M.W.(2001). Synthesis of lipids in the fat body of Gryllus bimaculatus: Age-dependency and regulation by adipokinetic hormone. Arch. Insect Biochem. Physiol., 47: 198–214.Search in Google Scholar

Martins C., Cullere M., Dalle Zotte A., Cardoso C., Alves S.P., Bessa R.J.B., Freire J.P.B., Falcão-e-Cunha L.(2018). Incorporation of two levels of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits: effects on growth performance and diet digestibility. Czech J. Anim. Sci., 63: 356–362.Search in Google Scholar

Megido R.C., Poelaert C., Ernens M., Liotta M., Blecker C., Danthine S., Tyteca E., HaubrugeÉ., Alabi T., Bindelle J., Francis F.(2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res. Int., 106: 503–508.Search in Google Scholar

Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L.(2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric., 98: 5776–5784.Search in Google Scholar

Mentang F., Maita M., Ushio H., Ohshima T.(2011). Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats. Food Chem., 127: 899–904.Search in Google Scholar

Mlcek J., AdámkováA., Adámek M., Borkovcova M., Bednarova M., Knizkova I.(2019). Fat from Tenebrionidae bugs – sterols content, fatty acid profiles, and cardiovascular risk indexes. Pol. J. Food Nutr. Sci., 69: 247–254.Search in Google Scholar

Motte C., Rios A., Lefebvre T., Do H., Henry M., Jintasataporn O.(2019). Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9: 258.Search in Google Scholar

Müller A., Wolf D., Gutzeit H.O.(2017). The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch., C.J. Biosci. 72: 351–363.Search in Google Scholar

Mungkung R., Aubin J., Prihadi T.H., Slembrouck J., vander Werf H.M., Legendre M.(2013). Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J. Clean. Prod., 57: 249–256.Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A.(2018). Insect meals in fish nutrition. Rev. Aquacult. 10: 1–24.Search in Google Scholar

Oonincx D.G.A.B., Dierenfeld E.S.(2012). An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 31: 40–54.Search in Google Scholar

Oonincx D.G., Van Broekhoven S., Van Huis A., van Loon J.J.(2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 10: e0144601.Search in Google Scholar

Oonincx D.G., van Broekhoven S., van Huis A., van Loon J.J.(2019). Correction: feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 14: e0222043.Search in Google Scholar

Paul A., Frederich M., Megido R.C., Alabi T., Malik P., Uyttenbroeck R., Francis F., Blecker C., Haubruge E., Lognay G., Danthine S.(2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol., 20: 337–340.Search in Google Scholar

Pereira N.R., Ferrarese-Filho O., Matsushita M., de Souza N.E.(2003). Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. J. Food Compost. Anal., 16: 451–457.Search in Google Scholar

Pinotti L., Giromini C., Ottoboni M., Tretola M., Marchis D.(2019). Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal, 13: 1365–1375.Search in Google Scholar

Pontes E.G., Leite P., Majerowicz D., Atella G.C., Gondim K.C.(2008). Dynamics of lipid accumulation by the fat body of Rhodnius prolixus: the involvement of lipophorin binding sites. J. Insect Physiol., 54: 790–797.Search in Google Scholar

Purschke B., Stegmann T., Schreiner M., Jäger H.(2017). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Technol., 119: 1600134.Search in Google Scholar

Ravindran V., Tancharoenrat P., Zaefarian F., Ravindran G.(2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Tech., 213: 1–21.Search in Google Scholar

Ravzanaadii N., Kim S.H., Choi W.H., Hong S.J., Kim N.J.(2012). Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol., 25: 93–98.Search in Google Scholar

Rawski M., Mans C., Kierończyk B., Świątkiewicz S., Barc A., Józefiak D.(2018). Freshwater turtle nutrition – a review of scientific and practical knowledge. Ann. Anim. Sci., 18: 17–37.Search in Google Scholar

Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M.(2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 57.Search in Google Scholar

Rumpold B.A., Schlüter O.K.(2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.Search in Google Scholar

Ruschioni S., Loreto N., Foligni R., Mannozzi C., Raffaelli N., Zamporlini F., Pasquini M., Roncolini A., Cardinali F., Osimani A., Aquilanti L.(2020). Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) Larvae. Foods, 9: 317.Search in Google Scholar

Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., Dalle Zotte A.(2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances feed-choice blood traits carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 1–8.Search in Google Scholar

Schiavone A., Dabbou S., De Marco M., Cullere M., Biasato I., Biasibetti E., Capucchio M.T., Bergagna S., Dezzutto D., Meneguz M., Gai F., Dalle Zotte A., Gasco L.(2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032–2039.Search in Google Scholar

Shurson G.C., Kerr B.J., Hanson A.R.(2015). Evaluating the quality of feed fats and oils and their effects on pig growth performance. J. Anim. Sci. Biotechnol., 6: 10–21.Search in Google Scholar

Siemianowska E., Kosewska A., Aljewicz M., Skibniewska K.A., Polak-Juszczak L., Jarocki A., Jedras M.(2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci., 4: 287–291.Search in Google Scholar

Smets R., Verbinnen B., Van De Voorde I., Aerts G., Claes J., Van Der Borght M.(2020). Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valor., 7: 1–12.Search in Google Scholar

Sosa D.A.T., Fogliano V.(2017). Potential of insect-derived ingredients for food applications. In: Insect Physiology and Ecology, Shields V.D.C. (ed.). InTechOpen, Rijeka, Croatia, pp. 215–231.Search in Google Scholar

Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S.(2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97: 2594–2600.Search in Google Scholar

St-Hilaire S., Cranfill K., Mc Guire M.A., Mosley E.E., Tomberlin J.K., Newton L., Sealey W., Sheppard C., Irving S.(2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc., 38: 309–313.Search in Google Scholar

Sypniewski J., Kierończyk B., Benzertiha A., Mikołajczak Z., Pruszyńska-Oszmałek E., Kołodziejski P., Sassek M., Rawski M., Czekała W., Józefiak D.(2020). Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Brit. Poultry Sci., 1: 1–9.Search in Google Scholar

Tomotake H., Katagiri M., Yamato M.(2010). Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. J. Nutr. Sci. Vitaminol., 56: 446–448.Search in Google Scholar

Tschirner M., Kloas W.(2017). Increasing the sustainability of aquaculture systems: Insects as alternative protein source for fish diets. GAIA Ecol. Perspect. Sci. Soc., 26: 332–340.Search in Google Scholar

Tschirner M., Simon A.(2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed, 1: 249–259.Search in Google Scholar

Turek J., Sampels S., Khalili Tilami S., ČervenýD., KolářováJ., Randak T., Mráz J., Másílko J.(2018). Insects in rainbow trout (Oncorhynchus mykiss) feed: effect on growth, fatty acid composition and sensory attributes. Factors influencing nutritional value of fish. Proc. 13th International Symposium on Fisheries and Aquatic Sciences. Proceedings Book, Ankara, Turkey, 99 pp.Search in Google Scholar

Tzompa-Sosa D.A., Yi L., van Valenberg H.J., van Boekel M.A., Lakemond C.M.(2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res. Int., 62: 1087–1094.Search in Google Scholar

United States Departmentof Agriculture(USDA).Foreign Agricultural Service.USDA:Washington, D., USA.(2018). Oilseeds: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf, (accessed on 13 March 2020).Search in Google Scholar

Ushakova N.A., Brodskii E.S., Kovalenko A.A., Bastrakov A.I., Kozlova A.A., Pavlov A.D.S.(2016). Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl. Biochem. Biophys., 468: 209–212.Search in Google Scholar

Van Zanten H.H., Bikker P., Mollenhorst H., Meerburg B., De Boer I.(2015). Environmental impact of replacing soybean meal with rapeseed meal in diets of finishing pigs. Animal, 9: 1866–1874.Search in Google Scholar

Vargas A., Randazzo B., Riolo P., Truzzi C., Gioacchini G., Giorgini E., Loreto N., Ruschioni S., Zarantoniello M., Antonucci M., Polverini S.(2018). Rearing zebrafish on black soldier fly (Hermetia illucens): Biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish, 15: 404–419.Search in Google Scholar

Vargas-Abúndez A.J., Randazzo B., Foddai M., Sanchini L., Truzzi C., Giorgini E., Gasco L., Olivotto I.(2019). Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture, 498: 1–11.Search in Google Scholar

Zeitz J.O., Fennhoff J., Kluge H., Stangl G.I., Eder K.(2015). Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. Poultry Sci., 94: 2404–2413.Search in Google Scholar

Zhang W., Wu G., Xu S., Wang Q., Liu Y., Man C.(2020). Expression and function characterization of Gimap5 gene from different breeds of broilers. Chin. J. Biotechnol., 36: 259–266.Search in Google Scholar

Ziegler R.(1997). Lipid synthesis by ovaries and fat body of Aedes aegypti (Diptera: Culicidae). Eur. J. Entomol., 94: 385–91.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo