Open Access

Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout (Oncorhynchus mykiss) fry infected with Aeromonas hydrophila


Cite

Ahmadifar E., Akrami R., Ghelichi A., Zarejabad AM. (2011). Effects of different dietary prebiotic insulin levels on blood serum enzymes, hematologic, and biochemical parameters of great sturgeon (Huso huso) juveniles. Comp. Clin. Pathol., 20: 447–51. Search in Google Scholar

Akrami R., Ghelichi A., Manuchehri H. (2009a). Effect of dietary inulin as prebiotic on growth performance and survival of juvenile rainbow trout (Oncorhynchus mykiss). J. Mar. Sci. Technol., 4: 1–9. Search in Google Scholar

Akrami R., Abdolmajid H., Abbas M., Abdolmohammad AK. (2009b). Effect of dietary prebiotic inulin on growth performance, intestinal microflora, body composition, and hematological parameters of juvenile beluga, Huso huso (Linnaeus, 1758). J. World. Aquacult. Soc., 40: 771–779.10.1111/j.1749-7345.2009.00297.x Search in Google Scholar

Akrami R., Ghelichi A., Ahmadifar E. (2011). Effect of dietary prebiotic inulin on hematological and biochemical parameters of cultured juvenile beluga (Huso huso). J. Vet. Res., 66: 131–136. Search in Google Scholar

Akrami R., Ghelichi A., Zarei E. (2012). Effect of dietary supplementation of prebiotics inulin on growth, survival, lactic acid bacteria loading, and body composition of carp (Cyprinus carpio) juvenile. J. Fisheries., 5: 87–94. Search in Google Scholar

Akrami R., Iri Y., Rostami HK., Mansour MR. (2013). Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, lactobacillus bacterial population, and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish. Shellfish. Immunol., 35: 1235–1239. Search in Google Scholar

Amani Denji K., Razeghi Mansour M., Akrami R., Ghobadi Sh., Jafarpour SA., Mirbeygi SK. (2015). Effect of dietary prebiotic mannan oligosaccharide (MOS) on growth performance, intestinal microflora, body composition, haematological, and blood serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) juveniles. J. Fisheries. Aqua. Sci., 10: 255–265. Search in Google Scholar

Amirkolaie AK., Rostami B. (2015). Effects of dietary supplementation with Immunogen® on the growth, hematology, and gut microbiota of fingerling common carp Cyprinus carpio (Linnaeus). Fish. Aqua. Sci., 18: 379–85. Search in Google Scholar

Amirkolaie AK., Karimzadeh S., Mohamd-Jafary A. (2013). The effects of dietary supplement of Immunogen on growth performance, and visceral and hepatic somatic indices of juvenile rainbow trout, Oncorhynchus mykiss (Walbaum 1792). Asian. Fish. Sci., 26: 232–42. Search in Google Scholar

AOAC (2019). Official methods of analysis, 21st Edition, Association of official analytical chemists, Washington, DC, Chapter 16, pp 16–17 . Search in Google Scholar

Attia YA., Hamed RS., El-Hamid AA., Shahba HA., Bovera F. (2015). Effect of inulin and mannanoligosaccharides in comparison to zinc-bacitracin on growth performance, nutrient digestibility, and hematological profiles of growing rabbits. Anim. Product. Sci., 55: 80–86. Search in Google Scholar

Bakke-McKellep AM., Penn MH., Salas PM., Refstie S., Sperstad S., Landsverk T., Ringø E., Krogdahl, Å. (2007). Effects of dietary soybean meal, inulin, and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis, and proliferation in the teleost Atlantic salmon (Salmo salar L.). British. J. Nutr., 97: 699–713. Search in Google Scholar

Barclay T., Ginic-Markovic M., Cooper P., Petrovsky N. (2016). Inulin – a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excipients. Food. Chem., 1: 1132. Search in Google Scholar

Benfey TJ., Sutterlin AM. (1984). The haematology of triploid landlocked Atlantic salmon, Salmo solar L. J. Fish. Biol., 24: 333–338. Search in Google Scholar

Brown B. (1988). Routine hematology procedures. Hematology: Principle and Procedures. 7–122. Search in Google Scholar

Burr G., Hume M., Ricke S., Nisbet D., Gatlin D. (2010). In vitro and in vivo evaluation of the prebiotics GroBiotic®-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops × Morone saxatilis). Microb. Ecol., 59: 187–198. Search in Google Scholar

Cabello FC. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and the environment. Environ. Microb., 8: 1137–44.10.1111/j.1462-2920.2006.01054.x16817922 Search in Google Scholar

Causey JL., Slain JL., Tangled BC., Meyer PD. (1998). Stimulation of the human immune system by inulin in vitro. Proc. of Danone Conference on Probiotics and Immunity, Bonn, Germany. Search in Google Scholar

Cerezuela R., Cuesta A., Meseguer J., Ángeles EM. (2008) Effects of inulin on gilthead sea bream (Sparus aurata L.) innate immune parameters. Fish. Shellfish. Immunol., 24: 663–668.10.1016/j.fsi.2007.10.00218337122 Search in Google Scholar

Chakraborty SB., Hancz C. (2011). Application of phytochemicals as an immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aquacult., 3: 103–119.10.1111/j.1753-5131.2011.01048.x Search in Google Scholar

Ebrahimi G., Ouraji H., Khalesi M., Sudagar M., Barari A., Zarei Dangesaraki M., Jani Khalili KH. (2012). Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. J. Anim. Physiol. Anim. Nutr. 96: 591–599.10.1111/j.1439-0396.2011.01182.x21707781 Search in Google Scholar

Eshaghzadeh H., Hoseinifar SH., Vahabzadeh H., Ringø E., (2015). The effects of dietary inulin on growth performances, survival, and digestive enzyme activities of common carp (Cyprinus carpio) fry. Aquacult. Nutr., 21: 242–247.10.1111/anu.12155 Search in Google Scholar

FAO. (2018). The State of World Fisheries and Aquaculture: Contributing to Food Security and Nutrition for All. Italy, Rome, pp. 227. Search in Google Scholar

Farsani MN., Hoseinifar SH., Rashidian G., Farsani HG., Ashouri G., Van Doan, H. (2019). Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses, and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish. Shellfish. Immunol., 91: 233–240.10.1016/j.fsi.2019.05.03131102711 Search in Google Scholar

Genc MA., Aktas M., Genc E., Yilmaz E. (2007a). Effects of dietary mannan oligosaccharide on growth, body composition, and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquacult. Nutr., 13: 156–161.10.1111/j.1365-2095.2007.00469.x Search in Google Scholar

Genc MA., Yilmaz E., Genc E., Aktas M. (2007b). Effects of dietary mannan oligosaccharides (MOS) on growth, body composition, and intestine and liver histology of the hybrid Tilapia (Oreochromis niloticus×O. aureus). Israeli. J. Aquacult., 59: 10–16.10.46989/001c.20509 Search in Google Scholar

Grisdale-Helland B., Helland SJ., Gatlin DM. (2008). The effect of dietary supplementation with mannanoligosaccharide, fructooligosaccharide, or galactooligosaccharide on the growth and feed of Atlantic salmon (Salmo salar). Aquacult., 283: 163–167.10.1016/j.aquaculture.2008.07.012 Search in Google Scholar

He S., Xu G., Wu Y., Weng H., Xie H. (2003). Effects of IMO and FOS on the growth performance and non-specific immunity in hybrid tilapia. (in Chinese). Chinese Feed., 23: 14–15. Search in Google Scholar

Holland MCH., Lambris JD. (2002). The complement system in teleosts. Fish. Shellfish. Immunol., 12: 399–420.10.1006/fsim.2001.0408 Search in Google Scholar

Hoseini SM., Pérez-Jiménez A., Costas B., Azeredo R., Gesto M. (2019). Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Rev. Aquacult., 11: 3–24. Search in Google Scholar

Hoseini SM., Mirghaed AT., Ghelichpour M., Pagheh E., Iri Y., Kor A. (2020). Effects of dietary tryptophan supplementation and stocking density on growth performance and stress responses in rainbow trout (Oncorhynchus mykiss). Aquaculture, 519: 734908. Search in Google Scholar

Hoseini SM., Taheri Mirghaed A., Ghelichpour M. (2020). Effects of dietary tryptophan levels and fish stocking density on immunological and antioxidant responses and bactericidal activity against Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 51: 1455–1463. Search in Google Scholar

Hoseinifar SH., Mirvaghefi A., Merrifield DL., Mojazi Amiri B., Yelghi S., Darvish Bastami K. (2011). The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish. Physiol. Biochem., 37: 91–96. Search in Google Scholar

Hoseinifar SH., Esteban MÁ., Cuesta A., Sun, YZ. (2015). Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev. Fisheries Sci. Aquacult., 23: 315–328. Search in Google Scholar

Hossain S., Hashimoto M., Choudhury EK., Alam N., Hussain S., Hasan M., Choudhury SK., Mahmud I. (2003). Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clinic. Experimen. Pharmacol. Physiol., 30: 470–475. Search in Google Scholar

Huebner J., Wehling RL., Hutkins RW., (2007). Functional activity of commercial prebiotics. International. Dairy. J., 17: 770–775. Search in Google Scholar

Ibrahem MD., Fathi M., Mesalhy S., Abd El-Aty AD. (2010). Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish. Shellfish. Immunol., 29: 241–246. Search in Google Scholar

Kelly G. (2009). Inulin-Type Prebiotics: A Review (Part 2). Altern. Med. Rev., 14: 36–55. Search in Google Scholar

Khodadadi M., Abbasi N., Adorian TJ., Farsani HG., Hedayati A., Hoseini SM. (2018). Growth performance, survival, body composition, hematological parameters, intestinal histomorphology, and digestive enzymes’ activity in juvenile rainbow trout (Oncorhynchus mykiss) fed dietary Immunogen®. Appl. Aquacult., 30: 174–86. Search in Google Scholar

Khosravi M., Shamsaye Mehrjan M., Akrami R. (2010). The impact of different levels of inulin as prebiotic in the diet on the growth performance and body composition of roach fry (Rutilus rutilus caspicus). J. Natur. Res., 1: 98–107. Search in Google Scholar

Kozłowska I., Marć-Pieńkowska J., Bednarczyk M. (2016). Beneficial aspects of inulin supplementation as a fructooligosaccharide prebiotic in monogastric animal nutrition–a review. Annals. Anim. Sci., 16: 315–331. Search in Google Scholar

Kumar H., Kawai T., Akira S. (2011). Pathogen recognition by the innate immune system. International. Rev. Immunol., 30: 16–34. Search in Google Scholar

Larsen HN. (1964). Comparison of various methods of hemoglobin determination on catfish blood. Prog. Fish. Cult., 26: 11–15. Search in Google Scholar

Leenhouwers JI., Ter Veld M., Verreth JA., Schrama JW. (2007). Digesta characteristics and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture, 264: 330–41. Search in Google Scholar

Li J., Tan B., Mai K., (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses, and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture, 291: 35–40. Search in Google Scholar

Madrigal L., Sangronis E. (2007). Inulin and derivates as key ingredients in functional foods. Archiv. Latinoam. Nutr., 57: 387–96. Search in Google Scholar

Mahious AS., Gatesoupe FJ., Hervi M., Metailler R., Ollevier F. (2006). Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquacult. Int., 14:219–229. Search in Google Scholar

Manning TS., Gibson GR., (2004). Prebiotics. Best. Pract. Res. Clin. Gastroenterol., 18: 287–298. Search in Google Scholar

Mehrabi Z., Firouzbakhsh F., Jafarpour A. (2012). Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters, and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. J. Anim. Physiol. Anim. Nutr., 96: 474–81. Search in Google Scholar

Meyer D. (2008). Prebiotic dietary fibers and the immune system. Agro. Food. Indust., 19: 12–15. Search in Google Scholar

Mirghaed AT., Hoseini SM., Ghelichpour M. (2018). Effects of dietary 1, 8-cineole supplementation on physiological, immunological, and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immunol., 81: 182–188. Search in Google Scholar

Mumba PP., Jose M. (2005). Nutrient composition of selected fresh and processed fish species from Lake Malawi: A nutritional possibility for people living with HIV/AIDS. Int. J. Cons. Studies, 29: 72–77. Search in Google Scholar

North BP., Turnbull JF., Ellis T., Porter MJ., Migaud H., Bron J., Bromage NR. (2006). The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture, 255: 466–479. Search in Google Scholar

Nya EJ., Austin B. (2009). Use of garlic, Allium sativum, to control Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 32: 963–970. Search in Google Scholar

Ortiz LT., Rebolé A., Velasco S., Rodríguez ML., Treviño J., Tejedor JL., Alzueta C. (2013). Effects of inulin and fructooligosaccharides on growth performance, body chemical composition, and intestinal microbiota of farmed rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 19: 475–482. Search in Google Scholar

Ortuno J., Esteban MA., Mulero V., Meseguer J. (1998). Methods for studying the hemolytic, chemoattractant, and opsonic activities of seabream (Sparus aurata L.) serum. In: Methodology in fish diseases research, Barnes A.C., Davidson G.A., Hiney M.P.. Mclntosh D. eds), Vol. I. Aberdeen Fisheries Research Services, Scotland, pp. 97–100. Search in Google Scholar

Parry RM., Chandan RC., Shahani KM. (1965). A rapid and sensitive assay of muramidase, Proc. Society for Experimental Biology &Medicine. Society for Experimental Biology and Medicine (New York, NY), Royal Society of Medicine, London, pp 384–386. Search in Google Scholar

Partida-Arangure BO., Luna-González A., Fierro-Coronado JA., del Carmen Flores-Miranda M., González-Ocampo HA. (2013). Effect of inulin and probiotic bacteria on growth, survival, immune response, and prevalence of white spot syndrome virus (WSSV) in Litopenaeus vannamei cultured under laboratory conditions. African. J. Biotech., 12(21). Search in Google Scholar

Ringø E., Olsen R., Gifstad T., Dalmo R., Amlund H., Hemre GI., Bakke AM. (2010). Prebiotics in aquaculture: review. Aquacult. Nutr., 16: 117–36. Search in Google Scholar

Ringø E., Dimitroglou A., Hoseinifar SH., Davies SJ. (2014). Prebiotics in finfish: an update. In Aquaculture Nutrition: Gut Health, Probiotics, and Prebiotics, D. Merrifield, E. Ringø (eds). Wiley Online Library, pp. 360–400.10.1002/9781118897263.ch14 Search in Google Scholar

Ross NW., Firth KJ., Wang A., Burka JF., Johnson SC. (2000). Changes in hydrolytic enzyme activities of naïve Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aqua. Organ., 41: 43–51 Search in Google Scholar

Sahin K., Yazlak H., Orhan C., Tuzcu M., Akdemir F., Sahin, N. (2014). The effect of lycopene on antioxidant status in rainbow trout (Oncorhynchus mykiss) reared under high stocking density. Aquaculture, 418: 132–138. Search in Google Scholar

Salze G., McLean E., Schwarz MH. (2008). Craig SR. Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture, 274: 148–152. Search in Google Scholar

Sarder MRI., Thompson KD., Penman DJ., McAndrew BJ. (2001). Immune responses of Nile tilapia (Oreochromis niloticus L.) clones: I. Non-specific responses, Dev. Comp. Immunol. 25: 37–46. Search in Google Scholar

Saurabh S., Sahoo PK. (2008). Lysozyme: an important defense molecule of the fish innate immune system. Aquacult. Res., 39: 223–239. Search in Google Scholar

Seifert S., Watzl B. (2007). Inulin and oligofructose: a review of experimental data on immune modulation. J Nutr., 137:2563S–2567S10.1093/jn/137.11.2563S17951503 Search in Google Scholar

Sheikholeslami Amiri M., Yousefian M., Yavari V., Safari R., Ghiyasi M. (2012). Evaluation of inulin as prebiotic on rainbow trout (Oncorhynchus mykiss) (Walbaum, 1972) immunity characteristics and resistance to Streptococcus sp infection. Iranian. J. Bio. 24: 303–312. Search in Google Scholar

Silva DG., Cooper PD., Petrovsky N. (2004). Inulin-derived adjuvant efficiently promotes both Th1 and Th2 immune responses. Immunol. Cell. Biol., 82: 611–616. Search in Google Scholar

Siwicki A., Anderson D. (2000). Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum, FAO project GCP/INT/JPA, IFI, Olsztyn, Poland, pp. 105–112. Search in Google Scholar

Siwicki AK., Anderson DP., Rumsey GL. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 1: 125–39. Search in Google Scholar

Soleimani N., Hoseinifar SH., Merrifield DL., Barati M., Abadi ZH. (2012). Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities, and growth performance of Caspian roach (Rutilus rutilus) fry. Fish. Shellfish. Immunol., 32: 316–21. Search in Google Scholar

Song SK., Beck BR., Kim D., Park J., Kim J., Kim HD., Ringø E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish. Shellfish. Immunol., 40: 40–48. Search in Google Scholar

Sørum H. (2006). Antimicrobial drug resistance in fish pathogens. In Antimicrobial resistance in bacteria of animal origin Am. Soc. Microb., pp. 213–238. Search in Google Scholar

Staykov Y., Spring P., Denev S., Sweetman J. (2007). Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquacult. Int., 15: 153–161. Search in Google Scholar

Syed Raffic S., Ali Ambasankar A., Nandakumar S., Ezhil Praveena P. (2016). Effect of dietary inulin on growth, body composition, and gut microbiota on Asian sea bass (Lates calcarifer). Anim. Feed. Sci. Technol., 217: 87–94. Search in Google Scholar

Tahmasebi-Kohyani A., Keyvanshokooh S., Nematollahi A., Mahmoudi N., Pasha-Zanoosi H. (2012). Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish. Physiol. Biochem., 38: 431–440. Search in Google Scholar

Teitelbaum JE., Walker WA. (2002). Nutritional impact of pre- and probiotics as protective gastrointestinal organisms. Annual. Rev. Nutr., 22: 107–138. Search in Google Scholar

Torrecillas S., Makol A., Caballero MJ., Montero D., Robaina L., Real F., Sweetman J. (2007). Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish. Shellfish. Immunol., 23: 969–981. Search in Google Scholar

Trautwein E., Rieckhoff D., Eebersdobler H. (1998). Dietary inulin lowers plasma cholesterol and triacylglycerol and alters bile acid profile in hamsters. J. Nutr., 128: 1937–1943. Search in Google Scholar

Welker TL., Lim C., Yildirim-Aksoy M., Shelby R., Klesius PH. (2007). Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J. World. Aquacult. Soc., 38:24–35. Search in Google Scholar

Yan J., Guo C., Dawood MAO., Gao J. (2017). Effects of dietary chitosan on growth, lipid metabolism, immune response, and antioxidant-related gene expression in Misgurnus anguillicaudatus. Benef. Microbes., 8: 1–12. Search in Google Scholar

Yarahmadi P., Farahmand H., Miandare HK., Mirvaghefi A., Hoseinifar SH. (2014a). The effects of dietary Immunogen® on innate immune response, immune-related genes expression, and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immunol. 37(2): 209–214.10.1016/j.fsi.2014.02.00624560683 Search in Google Scholar

Yarahmadi P., Miandare HK., Farahmand H., Mirvaghefi A., Hoseinifar SH. (2014b). Dietary fermentable fiber upregulated immune-related genes expression, increased innate immune response, and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila. Fish. Shellfish. Immunol. 41(2): 326-331.10.1016/j.fsi.2014.09.00725218276 Search in Google Scholar

Yarahmadi P., Farsani HG., Khazaei A., Khodadadi M., Rashidiyan G., Jalali MA. (2016). Protective effects of the prebiotic on the immunological indicators of rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Fish. Shellfish. Immunol., 54: 589–597. Search in Google Scholar

Yousefian M., Amiri MS. (2009). A review of the use of prebiotic in aquaculture for fish and shrimp. African. J. Biotech., 8: 7313–7318 Search in Google Scholar

Zargari, A., Mazandarani, M., Hoseini, SM. (2018). Effects of safflower (Carthamus tinctorius) extract on serum antibacterial activity of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila, Streptococcus iniae and Yersinia ruckeri. Int. J. Aqu. Biol., 6: 1–7. Search in Google Scholar

Zhou Z., Ding Z., Huiyuan LV. (2007). Effects of dietary short-chain fructooligosaccharide on intestinal microflora, survival, and growth performance of juvenile white shrimp Litopenaeusb vannamei. J. World. Aquacult. Soc., 38: 296–301. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine