Cite

Apparicio M., Ferreira C.R., Tata T., Santos V.G., Alves A.E., Mostachio G.Q., Pires-Butler E.A., Motheo T.F., Padilha L.C., Pilau E.J., Gozzo F.C., Eberlin M.N., Lo Turco E.G., Luvoni G.C., Vicente W.R.R. (2012). Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS). Reprod. Domest. Anim., 47: 113–117.Search in Google Scholar

Apparicio M., Mostachio G.Q., Motheo T.F., Alves A.E., Padilha L., Pires-Butler E.A., Savi P.A., Uscategui R.A., Luvoni G.C., Vicente W.R. (2015). Distribution of cortical granules and meiotic maturation of canine oocytes in bi-phasic systems. Reprod. Fert. Develop., 27: 1082–1087.Search in Google Scholar

Bradley J., Swann K. (2019). Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int. J. Dev. Biol., 63: 93–103.Search in Google Scholar

Chastant-Maillard S., Viarisde Lesegno C., Chebrout M., Thoumire S., Meylheuc T., Fontbonne A., Chodkiewicz M., Saint-Dizier M., Reynaud K. (2011). The canine oocyte: uncommon features of in vivo and in vitro maturation. Reprod. Fert. Develop., 23: 391–402.Search in Google Scholar

De Avila Rodrigues B., Rodrigues J.L. (2003). Influence of reproductive status on in vitro oocyte maturation in dogs. Theriogenology, 60: 59–66.Search in Google Scholar

Delos Reyes M., Rojas C., Hugo Parraguez V., Palomino J. (2013). Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes. Theriogenology, 80: 587–596.Search in Google Scholar

Egenvall A., Hagman R., Bonnett B.N., Hedhammar A., Olson P., Lagerstedt A.S. (2001). Breed risk of pyometra in insured dogs in Sweden. J. Vet. Int. Med., 15: 530–538.Search in Google Scholar

El Shourbagy S.H., Spikings E.C., Freitas M., St John J.C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction, 131: 233–245.Search in Google Scholar

Hagman R. (2017). Canine pyometra: What is new? Reprod. Domest. Anim., 52, Suppl 2: 288–292.Search in Google Scholar

Hishinuma M., Minami S., Okamoto Y., Miyatake K., Sekine J. (2004). Recovery, morphological quality, and in vitro maturation of follicular oocytes from bitches with pyometra. Theriogenology, 62: 1652–1662.Search in Google Scholar

Jang G., Lee B. (2015). Update on the first cloned dog and outlook for canine cloning. Cell. Reprogram., 17: 325–326.Search in Google Scholar

Kim M.J., Oh H.J., Kim G.A., Setyawan E.M.N., Choi Y.B., Lee S.H., Petersen-Jones S.M., Ko C.J., Lee B.C. (2017). Birth of clones of the world’s first cloned dog. Sci. Rep., 7: 15235.Search in Google Scholar

Li L., Zheng P., Dean J. (2010). Maternal control of early mouse development. Development, 137: 859–870.Search in Google Scholar

Lonergan P., Fair T. (2016). Maturation of oocytes in vitro. Annu, Rev. Anim. Biosci., 4: 255–268.Search in Google Scholar

May-Panloup P., Chretien M.F., Jacques C., Vasseur C., Malthiery Y., Reynier P. (2005). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod., 20: 593–597.Search in Google Scholar

May-Panloup P., Chretien M.F., Malthiery Y., Reynier P. (2007). Mitochondrial DNA in the oocyte and the developing embryo. Curr. Top. Dev. Biol., 77: 51–83.Search in Google Scholar

Melandri M., Veronesi M.C., Pisu M.C., Majolino G., Alonge S. (2019). Fertility outcome after medically treated pyometra in dogs. J. Vet. Sci., 20: e39.Search in Google Scholar

Moussa M., Shu J., Zhang X.H., Zeng F. (2015). Maternal control of oocyte quality in cattle “a review”. Anim. Reprod. Sci., 155: 11–27.Search in Google Scholar

Nagashima J.B., Sylvester S.R., Nelson J.L., Cheong S.H., Mukai C., Lambo C., Flanders J.A., Meyers-Wallen V.N., Songsasen N., Travis A.J. (2015). Live births from domestic dog (Canis familiaris) embryos produced by in vitro fertilization. Plos One, 10: e0143930.Search in Google Scholar

Nagashima J.B., Travis A.J., Songsasen N. (2019) The domestic dog embryo: in vitro fertilization, culture, and transfer. Methods Mol. Biol., 2006: 247–267.Search in Google Scholar

Niskanen M., Thrusfield M.V. (1998). Associations between age, parity, hormonal therapy and breed, and pyometra in Finnish dogs. Vet. Rec., 143: 493–498.Search in Google Scholar

Palomino J., De Los Reyes M. (2016). Temporal expression of GDF-9 and BMP-15 mRNAs in canine ovarian follicles. Theriogenology, 86: 1541–1549.Search in Google Scholar

Paulini F., Melo E.O. (2011). The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reprod. Domest. Anim., 46: 354–361.Search in Google Scholar

Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.Search in Google Scholar

Samiec M., Romanek J., Lipinski D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141.Search in Google Scholar

Santos T.A., El Shourbagy S., St John J.C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril., 85: 584–591.Search in Google Scholar

Songsasen N., Wildt D.E. (2005). Size of the donor follicle, but not stage of reproductive cycle or seasonality, influences meiotic competency of selected domestic dog oocytes. Mol. Reprod. Dev., 72: 113–119.Search in Google Scholar

Turathum B., Saikhun K., Sangsuwan P., Kitiyanant Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol., 8: 70.Search in Google Scholar

Van Soom A., Rijsselaere T., Filliers M. (2014). Cats and dogs: two neglected species in this era of embryo production in vitro? Reprod. Domest. Anim., 49, Suppl 2: 87–91.Search in Google Scholar

Wai T., Ao A., Zhang X., Cyr D., Dufort D., Shoubridge E.A. (2010). The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod., 83: 52–62.Search in Google Scholar

Zuccotti M., Merico V., Bellone M., Mulas F., Sacchi L., Rebuzzini P., Prigione A., Redi C.A., Bellazzi R., Adjaye J., Garagna S. (2011). Gatekeeper of pluripotency: a common Oct4 transcriptional network operates in mouse eggs and embryonic stem cells. BMC Genomics, 12: 1–13.Search in Google Scholar

Zuccotti M., Merico V., Belli M., Mulas F., Sacchi L., Zupan B., Redi C.A., Prigione A., Adjaye J., Bellazzi R., Garagna S. (2012). OCT4 and the acquisition of oocyte developmental competence during folliculogenesis. Int. J. Dev. Biol., 56: 853–858.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine