Cite

Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., Vas-siliou G.S., Bench A.J., Boyd E.M., Curtin N., Scott M.A. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 365: 1054–1061.10.1016/S0140-6736(05)71142-9Search in Google Scholar

Bole-Feysot C., Goffin V., Edery M., Binart N., Kelly P.A. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev., 19: 225–268.10.1210/edrv.19.3.0334Search in Google Scholar

Brooks A.J., Dai W., O’Mara M.L., Abankwa D., Chhabra Y., Pelekanos R.A., Gar-don O., Tunny K.A., Blucher K.M., Morton C.J., Parker M.W. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science, 344: 1249783.10.1126/science.1249783Search in Google Scholar

Chen X., Chen X., Xu Y., Yang W., Wu N., Ye H., Yang J.Y., Hong Q., Xin Y., Yang M.Q., Deng Y. (2016). Association of six CpG-SNPs in the inflammation-related genes with coronary heart disease. Hum. Genomics, 10: 21.10.1186/s40246-016-0067-1Search in Google Scholar

Dayeh T.A., Olsson A.H., Volkov P., Almgren P., Rönn T., Ling C. (2013). Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 56: 1036–1046.10.1007/s00125-012-2815-7Search in Google Scholar

Deaton A.M., Bird A. (2011). CpG islands and the regulation of transcription. Genes Dev., 25: 1010–1022.10.1101/gad.2037511Search in Google Scholar

Etherton T.D., Bauman D.E. (1998). Biology of somatotropin in growth and lactation of domestic animals. Physiol. Rev., 78: 745–761.10.1152/physrev.1998.78.3.745Search in Google Scholar

Ferguson L.R., Han D.Y., Fraser A.G., Huebner C., Lam W.J., Morgan A.R., Duan H., Karunasinghe N. (2010). Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat. Res., 690: 108–115.10.1016/j.mrfmmm.2010.01.017Search in Google Scholar

Fonseca I., Silva P.V., Lange C.C., Guimarães M.F., Weller M.M.D.C.A., Sousa K.R.S., Lopes P.S., Guimarães J.D., Guimarães S.E. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776–781.10.1590/S1415-47572009005000074Search in Google Scholar

Harlid S., Ivarsson M.I., Butt S., Hussain S., Grzybowska E., Eyfjörd J.E., Len-ner P., Försti A., Hemminki K., Manjer J., Dillner J. (2011). A candidate CpG SNP approach identifies a breast cancer associated ESR1-SNP. Int. J. Cancer, 129: 1689–1698.10.1002/ijc.25786Search in Google Scholar

Huang Y., Tan H., Cao Q., Yuan G., Su G., Yang P. (2019). Different methylation of CpGSNPs in Behcet’s disease. Biomed. Res. Int., 2: 1–7.10.1155/2019/3489305Search in Google Scholar

Jo B.S., Choi S.S. (2015). Introns: the functional benefits of introns in genomes. Genom. Inf., 13: 112–118.10.5808/GI.2015.13.4.112Search in Google Scholar

Khan A., Mushtaq M.H., Ahmad D., Ud M., Chaudhry M., Khan A.W. (2015). Prevalence of clinical mastitis in bovines in different climatic conditions in KPK (Pakistan). Sci. Int., 27: 2289–2293.Search in Google Scholar

Koestler D.C., Chalise P., Cicek M.S., Cunningham J.M., Armasu S., Larson M.C., Chien J., Block M., Kalli K.R., Sellers T.A., Fridley B.L (2014). Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer. BMC Med. Genomics, 7: 8.10.1186/1755-8794-7-8Search in Google Scholar

Li X., Park W.J., Pyeritz R.E., Jabs E.W. (1995). Effect on splicing of a silent FGFR2 mutation in Crouzon Syndrome. Nat. Genet., 9: 232–233.10.1038/ng0395-232Search in Google Scholar

Mdegela R.H., Ryoba R., Karimuribo E.D., Phiri E.J., Løken T., Reksen O., Mten-geti E., Urio N.A. (2009). Prevalence of clinical and subclinical mastitis and quality of milk on smallholder dairy farms in Tanzania. J. S. Afr. Vet. Assoc., 80: 163–168.10.4102/jsava.v80i3.195Search in Google Scholar

Millar D.S., Horan M., Chuzhanova N.A., Cooper D.N. (2010). Characterisation of a functional intronic polymorphism in the human growth hormone (GHI) gene. Hum. Genom., 4: 289–301.10.1186/1479-7364-4-5-289Search in Google Scholar

Nackley A.G., Shabalina S.A., Tchivileva I.E., Satterfield K., Korchynskyi O., Makarov S.S., Maixner W., Diatchenko L. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314: 1930–1933.10.1126/science.1131262Search in Google Scholar

O’Shea J.J., Schwartz D.M., Villarino A.V., Gadina M., Mc Innes I.B., Lauren-ce A. (2015). The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med., 66: 311–328.10.1146/annurev-med-051113-024537Search in Google Scholar

Pant S.D., Schenkel F.S., Leyva-Baca I., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421.10.1186/1471-2164-8-421Search in Google Scholar

Parmley J.L., Hurst L.D. (2007). How do synonymous mutations affect fitness? Bioessays, 29: 515–519.10.1002/bies.2059217508390Search in Google Scholar

Patnaik S., Prasad A., Ganguly S. (2013). Mastitis, an infection of cattle udder: A review. J. Chem. Biol. Physical Sci., 3: 2676–2678.Search in Google Scholar

Richard I., Beckmann J.S. (1995). How neutral are synonymous codon mutations? Nat. Genet, 10: 259.10.1038/ng0795-259Search in Google Scholar

Rupp R., Boichard D. (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res., 34: 671–688.10.1051/vetres:2003020Search in Google Scholar

Sauna Z.E., Kimchi-Sarfaty C. (2013). Synonymous mutations as a cause of human genetic disease. In: eLS, John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a002517310.1002/9780470015902.a0025173Search in Google Scholar

Saxonov S., Berg P., Brutlag D.L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA, 103: 1412–1417.10.1073/pnas.0510310103Search in Google Scholar

Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res., 34: 475–491.10.1051/vetres:2003027Search in Google Scholar

Shoemaker R., Deng J., Wang W., Zhang K. (2010). Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res., 20: 883–889.10.1101/gr.104695.109Search in Google Scholar

Sigl T., Meyer H.H.D., Wiedemann S. (2014). Gene expression analysis of protein synthesis pathways in bovine mammary epithelial cells purified from milk during lactation and short-term restricted feeding. J. Anim. Physiol. Anim. Nutr., 98: 84–95.10.1111/jpn.12039Search in Google Scholar

Sordillo L.M., Streicher K.L. (2002). Mammary gland immunity and mastitis susceptibility. J. Mammary Gland Biol. Neoplasia, 7: 135–146.10.1023/A:1020347818725Search in Google Scholar

Szewczuk M. (2015). Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds. J. Dairy Res., 82: 287–292.10.1017/S0022029915000291Search in Google Scholar

Usman T., Yu Y., Liu C., Wang X., Zhang Q., Wang Y. (2014). Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis. Mol. Biol. Rep., 41: 8293–8301.10.1007/s11033-014-3730-4Search in Google Scholar

Usman T., Wang Y., Liu C., Wang X., Zhang Y., Yu Y. (2015). Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim. Genet., 46: 371–380.10.1111/age.12306Search in Google Scholar

Vaz-Drago R., Custódio N., Carmo-Fonseca M. (2017). Deep intronic mutations and human disease. Hum. Genet., 136: 1093–1111.10.1007/s00439-017-1809-4Search in Google Scholar

Villarino A.V., Kanno Y., Ferdinand J.R., O‘Shea J.J. (2015). Mechanisms of JAK/STAT signaling in immunity and disease. J. Immunol., 194: 21–27.10.4049/jimmunol.1401867Search in Google Scholar

Zhong Y., Wu J., Ma R., Cao H., Wang Z., Ding J., Cheng L., Feng J., Chen B. (2012). Association of Janus kinase 2 (JAK2) polymorphisms with acute leukemia susceptibility. Int. J. Lab. Hematol., 34: 248–253.10.1111/j.1751-553X.2011.01386.xSearch in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine