1. bookVolume 20 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Functions of Circular RNAs Involved in Animal Skeletal Muscle Development – A Review

Published Online: 28 Jan 2020
Volume & Issue: Volume 20 (2020) - Issue 1 (January 2020)
Page range: 3 - 10
Received: 06 May 2019
Accepted: 06 Aug 2019
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Circular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.

Keywords

Abdelmohsen K., Panda A.C., De S., Grammatikakis I., Kim J., Ding J., Noh J.H., Kim K.M., Mattison J.A., de Cabo R., Gorospe M. (2015). Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany. NY), 7: 903–910.Search in Google Scholar

Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. (2014). CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell., 56: 55–66.Search in Google Scholar

Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37.Search in Google Scholar

Chen L.L., Yang L. (2015). Regulation of circRNA biogenesis. RNA Biol., 12: 381–388.Search in Google Scholar

Conway A. (2018). World poultry production at nearly 123 million tons in 2018. Poultry Trends, 6.Search in Google Scholar

Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 44: 2846–2858.Search in Google Scholar

Ivanov A., Memczak S., Wyler E., Torti F., Porath H.T., Orejuela M.R., Piechotta M., Levanon E.Y., Landthaler M., Dieterich C., Rajewsky N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep., 10: 170–177.Search in Google Scholar

Kulcheski F.R., Christoff A.P., Margis R. (2016). Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol., 238: 42–51.Search in Google Scholar

Lasda E., Parker R. (2014). Circular RNAs: diversity of form and function. RNA, 20: 1829–1842.Search in Google Scholar

Legnini I., Di Timoteo G., Rossi F., Morlando M., Briganti F., Sthandier O., Fatica A., Santini T., Andronache A., Wade M., Laneve P., Rajewsky N., Bozzoni I. (2017). Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell., 66: 22–37.Search in Google Scholar

Li C., Li X., Ma Q., Zhang X., Cao Y., Yao Y., You S., Wang D., Quan R., Hou X., Liu Z., Zhan Q., Liu L., Zhang M., Yu S., Ni W., Hu S. (2017). Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget, 8: 97165–97177.Search in Google Scholar

Li H., Wei X., Yang J., Dong D., Hao D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Lin F., Bai Y., Chen H. (2018 a). circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of wnt3a. Mol. Ther. Nucleic Acids.,11: 272–283.10.1016/j.omtn.2018.02.012599288229858062Search in Google Scholar

Li H., Yang J., Wei X., Song C., Dong D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Qi X., Bai Y., Chen H. (2018 b). CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J. Cell. Physiol., 233: 4643–4651.10.1002/jcp.2623029044517Search in Google Scholar

Liang G., Yang Y., Niu G., Tang Z., Li K. (2017). Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res., 24: 523–535.Search in Google Scholar

Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., Loewer A., Ziebold U., Landthaler M., Kocks C., Le Noble F., Rajewsky N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495: 333–338.Search in Google Scholar

Nie M., Deng Z.L., Liu J., Wang D.Z. (2015). Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res. Int., 2015, 17.10.1155/2015/676575451683126258142Search in Google Scholar

Nitsche A., Doose G., Tafer H., Robinson M., Saha N.R., Gerdol M., Canapa A., Hoffmann S., Amemiya C.T., Stadler P.F. (2014). Atypical RNAs in the coelacanth transcriptome. J. Exp. Zool. Part B Mol. Dev. Evol., 322: 342–351.Search in Google Scholar

Ouyang H., Chen X., Wang Z., Yu J., Jia X., Li Z., Luo W., Abdalla B.A., Jebessa E., Nie Q., Zhang X. (2017). Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res., 25: 71–86.Search in Google Scholar

Ouyang H., Chen X., Li W., Li Z., Nie Q., Zhang X. (2018). Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front. Genet., 9: 1–10.Search in Google Scholar

Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., Herzog M., Schreyer L., Papavasileiou P., Ivanov A., Öhman M., Refojo D., Kadener S., Rajewsky N. (2014). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 58: 870–885.Search in Google Scholar

Salzman J., Chen R.E., Olsen M.N., Wang P.L., Brown P.O. (2013). Cell-type specific features of circular RNA expression. PLoS Genet., 9: 1003777.Search in Google Scholar

Schiaffino S., Sandri M., Murgia M. (2007). Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology, 22: 269–278.Search in Google Scholar

Schiaffino S., Dyar K.A., Ciciliot S., Blaauw B., Sandri M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J., 280: 4294–4314.Search in Google Scholar

Shen Y., Guo X., Wang W. (2017). Identification and characterization of circular RNAs in zebrafish. FEBS letters, 591: 213–220.Search in Google Scholar

Sun J., Xie M., Huang Z., Li H., Chen T., Sun R., Wang J., Xi Q., Wu T., Zhang Y. (2017). Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits. J. Anim. Sci., 95: 1092–1103.Search in Google Scholar

Venø M.T., Hansen T.B., Venø S.T., Clausen B.H., Grebing M., Finsen B., Holm I.E., Kjems J. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol., 16: 245.Search in Google Scholar

Vicens Q., Westhof E. (2014). Previews Biogenesis of Circular RNAs. Cell, 159: 13–14.Search in Google Scholar

Wei X., Li H., Yang J., Hao D., Dong D., Huang Y., Lan X., Plath M., Lei C., Lin F., Bai Y., Chen H. (2017). Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis., 8: e3153.Search in Google Scholar

Westholm J.O., Miura P., Olson S., Shenker S., Joseph B., Sanfilippo P., Celniker S.E., Graveley B.R., Lai E.C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9: 1966–1981.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo