[Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 25: 3389–3402.]Search in Google Scholar
[Bai Y., Lu J., Sharma K.L. (2009). Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res., 19: 802–815.]Search in Google Scholar
[Brandon M., Baldi P.A., Wallace D.C. (2006). Mitochondrial mutations in cancer. Oncogene, 25: 4647–4662.]Search in Google Scholar
[Combet C., Blanchet C., Geourjon C., Deleage G. (2000). NPS@: network protein sequence analysis. Trends Biochem. Sci., 25: 147–150.]Search in Google Scholar
[Dement G.A., Maloney S.C., Reeves R. (2007). Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function. Exp. Cell Res., 313: 77–87.]Search in Google Scholar
[Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. (2005). Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Humana Press, pp. 571–607.10.1385/1-59259-890-0:571]Search in Google Scholar
[Goldschmidt M., Peña L., Rasotto R., Zappulli V. (2011). Classification and grading of canine mammary tumors. Vet. Pathol., 48: 117–131.]Search in Google Scholar
[Grzybowska-Szatkowska L., Slaska B. (2012). Mitochondrial DNA and carcinogenesis (review). Mol. Med. Rep., 6: 923–930.]Search in Google Scholar
[Guruprasad K., Reddy B.B., Pandit M.W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel., 4: 155–161.]Search in Google Scholar
[Huang X., Madan A. (1999). CAP3: A DNA sequence assembly program. Genome Res., 9: 868–877.]Search in Google Scholar
[Imes D.L., Wictum E.J., Allard M.W., Sacks B.N. (2012). Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes. Forensic Sci. Int.-Gen., 6: 630–639.]Search in Google Scholar
[Kim S.K., Lee S.E., Jeong H., Ha J.H. (1998). The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol., 10: 210–220.]Search in Google Scholar
[Lowe T.M., Chan P.P. (2016). tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res., 44: W54–57.]Search in Google Scholar
[Łopuszyński W., Szczubiał M., Komsta R. (2010). Prognostic status of p53 protein accumulation in canine malignant mammary tumors. B. Vet. I. Pulawy, 54: 105–111.]Search in Google Scholar
[McFarland R., Elson J.L., Talyor R.W., Howell N., Turnbull D.M. (2004). Assigning pathogenicity to mitochondrial tRNA mutations: when ‘definitely maybe’ is not good enough. Genome Anal., 20: P591–596.]Search in Google Scholar
[Nisztuk-Pacek S., Ślaska B., Grzybowska-Szatkowska L., Babicz M. (2019). Paternal leakage of mitochondrial DNA in the raccoon dog (Nyctereutes procyonoides Gray 1834). Ann. Anim. Sci., 19: 61–69.]Search in Google Scholar
[Panwar B., Raghava G.P.S. (2014). Prediction of uridine modifications in tRNA sequences. BMC Bioinformatics, 15: 326.]Search in Google Scholar
[Slaska B., Grzybowska-Szatkowska L., Surdyka M., Nisztuk S., Rozanska D., Rozanski P., Smiech A., Orzelski M. (2014). Mitochondrial D-loop mutations and polymorphisms are connected with canine malignant cancers. Mitochondr. DNA, 25: 238–243.]Search in Google Scholar
[Slaska B., Grzybowska-Szatkowska L., Nisztuk S., Surdyka M., Rozanska D. (2015). Mitochondrial DNA polymorphism in genes encoding ND1, COI and CYTB in canine malignant cancers. Mitochondr. DNA, 26: 452–458.]Search in Google Scholar
[Surdyka M., Slaska B. (2017 a). Defect of the mitochondrial DNA hypervariable region as a risk factor for canine mammary tumor. Vet. Comp. Oncol., 15: 820–828.10.1111/vco.1222427198058]Search in Google Scholar
[Surdyka M., Slaska B. (2017 b). Defect in ND2, COX2, ATP6, and COX3 mitochondrial genes as a risk factor for canine mammary tumor. Vet. Comp. Oncol., 15: 1062–1072.10.1111/vco.1224727278673]Search in Google Scholar
[Szczubiał M., Łopuszyński W. (2011). Prognostic value of regional lymph node status in canine mammary carcinomas. Vet. Comp. Oncol., 9: 296–303.]Search in Google Scholar
[Ślaska B., Grzybowska-Szatkowska L., Bugno-Poniewierska M., Surdyka M., Śmiech A. (2013). Nuclear and mitochondrial DNA mutation in human and canine tumors. Med. Weter., 69: 195–202.]Search in Google Scholar
[Ślaska B., Surdyka M., Brodzki A., Nisztuk S., Gurgul A., Bugno-Poniewierska M., Śmiech A., Różańska D., Orzelski M. (2014). Mitochondrial D-loop mutations can be detected in sporadic malignant tumors in dogs. B. Vet. I. Pulawy, 631–637.10.2478/bvip-2014-0096]Search in Google Scholar
[Ślaska B., Grzybowska-Szatkowska L., Bugno-Poniewierska M., Gurgul A., Śmiech A., Różańska D., Dudka J. (2016). Relevance of molecular changes in the ND4 gene in German Shepherd dog tumors. Pol. J. Vet. Sci., 19: 461–469.]Search in Google Scholar
[Śmiech A., Ślaska B., Bownik A., Grzybowska-Szatkowska L., Dudka J., Łopuszyński W. (2019). Heteroplasmic mutations and polymorphisms in the Cyb gene of mitochondrial DNA in canine mast cell tumors. In Vivo, 33: 57–63.]Search in Google Scholar
[Śmiech A., Ślaska B., Surdyka M., Grzybowska-Szatkowska L., Łopuszyński W., Różańska D. (2016). Identification of additional mitochondrial DNA mutations in canine mast cell tumors. Acta Vet. Scand., 58: 28.]Search in Google Scholar
[Tang H., Thomas P.D. (2016). PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics, 32: 2230–2232.]Search in Google Scholar
[Webb K.M., Allard M.W. (2009). Identification of forensically informative SNPs in the domestic dog mitochondrial control region. J. Forensic Sci., 54: 289–303.]Search in Google Scholar