This work is licensed under the Creative Commons Attribution 4.0 International License.
F.R. Alves and P.M. Catarino, Sequência matricial generalizada de Fibonacci e sequência matricial k-Pell: propriedades matriciais, C.Q.D. - Revista Eletrônica Paulista de Matemática 15 (2019), Edição Julho, 39–54.AlvesF.R.CatarinoP.M.Sequência matricial generalizada de Fibonacci e sequência matricial k-Pell: propriedades matriciaisC.Q.D. - Revista Eletrônica Paulista de Matemática152019Edição Julho,3954Search in Google Scholar
M.K. Azarian, The generating function for the Fibonacci sequence, Missouri J. Math. Sci. 2 (1990), no. 2, 78–79.AzarianM.K.The generating function for the Fibonacci sequenceMissouri J. Math. Sci.2199027879Search in Google Scholar
J.B. Bacani and J.F. Rabago, On generalized Fibonacci numbers, Appl. Math. Sci. (Ruse) 9 (2015), no. 73, 3611–3622.BacaniJ.B.RabagoJ.F.On generalized Fibonacci numbersAppl. Math. Sci. (Ruse)920157336113622Search in Google Scholar
G. Berzsenyi, Gaussian Fibonacci numbers, Fibonacci Quart. 15 (1977), no. 3, 233–236.BerzsenyiG.Gaussian Fibonacci numbersFibonacci Quart.1519773233236Search in Google Scholar
F. Bezerra, F. Alves, and R. Vieira, Relações recorrentes bidimensionais e tridimensionais de Narayana, C.Q.D. - Revista Eletrônica Paulista de Matemática 18 (2020), Edição Julho, 12–28.BezerraF.AlvesF.VieiraR.Relações recorrentes bidimensionais e tridimensionais de NarayanaC.Q.D. - Revista Eletrônica Paulista de Matemática182020Edição Julho,1228Search in Google Scholar
A. Borges, P. Catarino, A. Aires, P. Vasco, and H. Campos, Two-by-two matrices involving k-Fibonacci and k-Lucas sequences, Appl. Math. Sci. (Ruse) 8 (2014), no. 34, 1659–1666.BorgesA.CatarinoP.AiresA.VascoP.CamposH.Two-by-two matrices involving k-Fibonacci and k-Lucas sequencesAppl. Math. Sci. (Ruse)820143416591666Search in Google Scholar
P. Catarino, On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci. 9 (2014), no. 1, 37–42.CatarinoP.On some identities for k-Fibonacci sequenceInt. J. Contemp. Math. Sci.9201413742Search in Google Scholar
P. Catarino and H. Campos, From Fibonacci sequence to more recent generalisations, in: F. Yilmaz et al. (eds.), Mathematical Methods for Engineering Applications. IC-MASE 2021, Salamanca, Spain, July 1–2, Springer Proc. Math. Stat., 384, Springer, Cham, 2022, pp. 259–269.CatarinoP.CamposH.From Fibonacci sequence to more recent generalisationsin:YilmazF.(eds.),Mathematical Methods for Engineering Applications. IC-MASE 2021Salamanca, SpainJuly 1–2Springer Proc. Math. Stat., 384,SpringerCham2022259269Search in Google Scholar
P. Catarino, D. Santos, and E. Costa, On t-dimensional Gersenne sequences and their symmetry properties, Symmetry 17 (2025), no. 7, Paper No. 1079, 16 pp.CatarinoP.SantosD.CostaE.On t-dimensional Gersenne sequences and their symmetry propertiesSymmetry1720257Paper No. 1079,16 ppSearch in Google Scholar
P. Catarino and P. Vasco, Some basic properties and a two-by-two matrix involving the k-Pell numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 45, 2209–2215.CatarinoP.VascoP.Some basic properties and a two-by-two matrix involving the k-Pell numbersInt. J. Math. Anal. (Ruse)720134522092215Search in Google Scholar
J. Chimpanzo, P. Catarino, and M. Otero-Espinar, Some identities and generating functions for bidimensional balancing and cobalancing sequences, Univ. J. Math. Appl. 7 (2024), no. 2, 68–75.ChimpanzoJ.CatarinoP.Otero-EspinarM.Some identities and generating functions for bidimensional balancing and cobalancing sequencesUniv. J. Math. Appl.7202426875Search in Google Scholar
J. Chimpanzo, P. Catarino, and M. Otero-Espinar, Bidimensional balancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers via the determinant of a tridiagonal matrix, Indian J. Pure Appl. Math. (2025). https://doi.org/10.1007/s13226-025-00771-z.ChimpanzoJ.CatarinoP.Otero-EspinarM.Bidimensional balancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers via the determinant of a tridiagonal matrixIndian J. Pure Appl. Math.2025https://doi.org/10.1007/s13226-025-00771-z.Search in Google Scholar
J. Chimpanzo, P. Catarino, P. Vasco, and A. Borges, Bidimensional extensions of balancing and Lucas-balancing numbers, J. Discrete Math. Sci. Cryptogr. 27 (2024), no. 1, 95–115.ChimpanzoJ.CatarinoP.VascoP.BorgesA.Bidimensional extensions of balancing and Lucas-balancing numbersJ. Discrete Math. Sci. Cryptogr.272024195115Search in Google Scholar
J. Chimpanzo, M. Otero-Espinar, A. Borges, P. Vasco, and P. Catarino, Bidimensional extensions of cobalancing and Lucas-cobalancing numbers, Ann. Math. Sil. 38 (2024), no. 2, 241–262.ChimpanzoJ.Otero-EspinarM.BorgesA.VascoP.CatarinoP.Bidimensional extensions of cobalancing and Lucas-cobalancing numbersAnn. Math. Sil.3820242241262Search in Google Scholar
E. Costa, P. Catarino, F. Monteiro, V. Sousa, and D. Santos, Tricomplex Fibonacci numbers: a new family of Fibonacci-type sequences, Mathematics 12 (2024), no. 23, Paper No. 3723, 15 pp.CostaE.CatarinoP.MonteiroF.SousaV.SantosD.Tricomplex Fibonacci numbers: a new family of Fibonacci-type sequencesMathematics12202423Paper No. 3723,15 ppSearch in Google Scholar
E. Costa, P. Catarino, P. Vasco, and F. Alves, A brief study on the k-dimensional Repunit sequence, Axioms 14 (2025), no. 2, Paper No. 109, 16 pp.CostaE.CatarinoP.VascoP.AlvesF.A brief study on the k-dimensional Repunit sequenceAxioms1420252Paper No. 109,16 ppSearch in Google Scholar
M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integers 9 (2009), no. 6, 639–654.EdsonM.YayenieO.A new generalization of Fibonacci sequence and extended Binet's formulaIntegers920096639654Search in Google Scholar
S. Falcón, On the generating matrices of the k-Fibonacci numbers, Proyecciones 32 (2013), no. 4, 347–357.FalcónS.On the generating matrices of the k-Fibonacci numbersProyecciones3220134347357Search in Google Scholar
S. Falcón, On the extended (k, t)-Fibonacci numbers, J. Adv. Math. Comput. Sci. 39 (2024), no. 7, 81–89.FalcónS.On the extended (k, t)-Fibonacci numbersJ. Adv. Math. Comput. Sci.39202478189Search in Google Scholar
S. Falcón and Á. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624.FalcónS.PlazaÁ.On the Fibonacci k-numbersChaos Solitons Fractals322007516151624Search in Google Scholar
H.W. Gould, A history of the Fibonacci Q-matrix and a higher-dimensional problem, Fibonacci Quart. 19 (1981), no. 3, 250–257.GouldH.W.A history of the Fibonacci Q-matrix and a higher-dimensional problemFibonacci Quart.1919813250257Search in Google Scholar
C.J. Harman, Complex Fibonacci numbers, Fibonacci Quart. 19 (1981), no. 1, 82–86.HarmanC.J.Complex Fibonacci numbersFibonacci Quart.19198118286Search in Google Scholar
A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly 68 (1961), no. 5, 455–459.HoradamA.F.A generalized Fibonacci sequenceAmer. Math. Monthly6819615455459Search in Google Scholar
A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), no. 3, 289–291.HoradamA.F.Complex Fibonacci numbers and Fibonacci quaternionsAmer. Math. Monthly7019633289291Search in Google Scholar
A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), no. 3, 161–176.HoradamA.F.Basic properties of a certain generalized sequence of numbersFibonacci Quart.319653161176Search in Google Scholar
H. Hosoya, Fibonacci triangle, Fibonacci Quart. 14 (1976), no. 2, 173–179.HosoyaH.Fibonacci triangleFibonacci Quart.1419762173179Search in Google Scholar
J.H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quart. 3 (1965), no. 4, 315–318.JordanJ.H.Gaussian Fibonacci and Lucas numbersFibonacci Quart.319654315318Search in Google Scholar
D. Kalman and R. Mena, The Fibonacci numbers–exposed, Math. Mag. 76 (2003), no. 3, 167–181.KalmanD.MenaR.The Fibonacci numbers–exposedMath. Mag.7620033167181Search in Google Scholar
C.H. King, Some Properties of the Fibonacci Numbers, Master's thesis, San Jose State College, 1960.KingC.H.Some Properties of the Fibonacci NumbersMaster's thesis,San Jose State College1960Search in Google Scholar
C. Kızılateş, P. Catarino, and N. Tuğlu, On the bicomplex generalized Tribonacci quaternions, Mathematics 7 (2019), no. 1, Paper No. 80, 8 pp.KızılateşC.CatarinoP.TuğluN.On the bicomplex generalized Tribonacci quaternionsMathematics720191Paper No. 80,8 ppSearch in Google Scholar
T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, John Wiley & Sons, Hoboken, NJ, 2017.KoshyT.Fibonacci and Lucas Numbers with ApplicationsVolume 1,John Wiley & SonsHoboken, NJ2017Search in Google Scholar
B. Kuloğlu and E. Özkan, On the (p, q)-Narayana n-dimensional recurrences, J. Sci. Arts 23 (2023), no. 3, 707–714.KuloğluB.ÖzkanE.On the (p, q)-Narayana n-dimensional recurrencesJ. Sci. Arts2320233707714Search in Google Scholar
R. Oliveira and F. Alves, Os números Gaussianos de Fibonacci e relações recorrentes bidimensionais, Rev. Thema 16 (2019), no. 4, 745–754.OliveiraR.AlvesF.Os números Gaussianos de Fibonacci e relações recorrentes bidimensionaisRev. Thema1620194745754Search in Google Scholar
R. Oliveira, F. Alves, and R. Paiva, Identidades bi e tridimensionais para os números de Fibonacci na forma complexa, C.Q.D. - Revista Eletrônica Paulista de Matemática 11 (2017), Edição Dezembro, 91–106.OliveiraR.AlvesF.PaivaR.Identidades bi e tridimensionais para os números de Fibonacci na forma complexaC.Q.D. - Revista Eletrônica Paulista de Matemática112017Edição Dezembro,91106Search in Google Scholar
S. Pethe and A.F. Horadam, Generalised Gaussian Fibonacci numbers, Bull. Aust. Math. Soc. 33 (1986), no. 1, 37–48.PetheS.HoradamA.F.Generalised Gaussian Fibonacci numbersBull. Aust. Math. Soc.33198613748Search in Google Scholar
B. Singh, O. Sikhwal, and Y. Gupta, Generalized Fibonacci–Lucas sequence, Turk. J. Anal. Number Theory 2 (2014), no. 6, 193–197.SinghB.SikhwalO.GuptaY.Generalized Fibonacci–Lucas sequenceTurk. J. Anal. Number Theory220146193197Search in Google Scholar
N.J. Sloane et al., The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation Inc., https://oeis.org.SloaneN.J.The On-Line Encyclopedia of Integer SequencesThe OEIS Foundation Inc.https://oeis.org.Search in Google Scholar
S. Uygun, Complex Jacobsthal numbers in two dimension, Sarajevo J. Math. 20(33) (2024), no. 2, 219–229.UygunS.Complex Jacobsthal numbers in two dimensionSarajevo J. Math.20(33)20242219229Search in Google Scholar
S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, Chelmsford, MA, 2008.VajdaS.Fibonacci and Lucas Numbers, and the Golden Section: Theory and ApplicationsCourier CorporationChelmsford, MA2008Search in Google Scholar
R. Vieira, F. Alves, and P. Catarino, Relações bidimensionais e identidades da sequência de Leonardo, Rev. Sergipana Mat. Educ. Mat. 4 (2019), no. 2, 156–173.VieiraR.AlvesF.CatarinoP.Relações bidimensionais e identidades da sequência de LeonardoRev. Sergipana Mat. Educ. Mat.420192156173Search in Google Scholar
A. Wani, V. Badshah, G. Rathore, and P. Catarino, Generalized Fibonacci and k-Pell matrix sequences, Punjab Univ. J. Math. (Lahore) 51 (2020), no. 1, 17–28.WaniA.BadshahV.RathoreG.CatarinoP.Generalized Fibonacci and k-Pell matrix sequencesPunjab Univ. J. Math. (Lahore)51202011728Search in Google Scholar
O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011), no. 12, 5603–5611.YayenieO.A note on generalized Fibonacci sequencesAppl. Math. Comput.21720111256035611Search in Google Scholar