Open Access

On Matrices with Bidimensional Fibonacci Numbers

 and   
Sep 22, 2025

Cite
Download Cover

F.R. Alves and P.M. Catarino, Sequência matricial generalizada de Fibonacci e sequência matricial k-Pell: propriedades matriciais, C.Q.D. - Revista Eletrônica Paulista de Matemática 15 (2019), Edição Julho, 39–54. AlvesF.R. CatarinoP.M. Sequência matricial generalizada de Fibonacci e sequência matricial k-Pell: propriedades matriciais C.Q.D. - Revista Eletrônica Paulista de Matemática 15 2019 Edição Julho, 39 54 Search in Google Scholar

M.K. Azarian, The generating function for the Fibonacci sequence, Missouri J. Math. Sci. 2 (1990), no. 2, 78–79. AzarianM.K. The generating function for the Fibonacci sequence Missouri J. Math. Sci. 2 1990 2 78 79 Search in Google Scholar

J.B. Bacani and J.F. Rabago, On generalized Fibonacci numbers, Appl. Math. Sci. (Ruse) 9 (2015), no. 73, 3611–3622. BacaniJ.B. RabagoJ.F. On generalized Fibonacci numbers Appl. Math. Sci. (Ruse) 9 2015 73 3611 3622 Search in Google Scholar

G. Berzsenyi, Gaussian Fibonacci numbers, Fibonacci Quart. 15 (1977), no. 3, 233–236. BerzsenyiG. Gaussian Fibonacci numbers Fibonacci Quart. 15 1977 3 233 236 Search in Google Scholar

F. Bezerra, F. Alves, and R. Vieira, Relações recorrentes bidimensionais e tridimensionais de Narayana, C.Q.D. - Revista Eletrônica Paulista de Matemática 18 (2020), Edição Julho, 12–28. BezerraF. AlvesF. VieiraR. Relações recorrentes bidimensionais e tridimensionais de Narayana C.Q.D. - Revista Eletrônica Paulista de Matemática 18 2020 Edição Julho, 12 28 Search in Google Scholar

A. Borges, P. Catarino, A. Aires, P. Vasco, and H. Campos, Two-by-two matrices involving k-Fibonacci and k-Lucas sequences, Appl. Math. Sci. (Ruse) 8 (2014), no. 34, 1659–1666. BorgesA. CatarinoP. AiresA. VascoP. CamposH. Two-by-two matrices involving k-Fibonacci and k-Lucas sequences Appl. Math. Sci. (Ruse) 8 2014 34 1659 1666 Search in Google Scholar

P. Catarino, On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci. 9 (2014), no. 1, 37–42. CatarinoP. On some identities for k-Fibonacci sequence Int. J. Contemp. Math. Sci. 9 2014 1 37 42 Search in Google Scholar

P. Catarino and H. Campos, From Fibonacci sequence to more recent generalisations, in: F. Yilmaz et al. (eds.), Mathematical Methods for Engineering Applications. IC-MASE 2021, Salamanca, Spain, July 1–2, Springer Proc. Math. Stat., 384, Springer, Cham, 2022, pp. 259–269. CatarinoP. CamposH. From Fibonacci sequence to more recent generalisations in: YilmazF. (eds.), Mathematical Methods for Engineering Applications. IC-MASE 2021 Salamanca, Spain July 1–2 Springer Proc. Math. Stat., 384, Springer Cham 2022 259 269 Search in Google Scholar

P. Catarino, D. Santos, and E. Costa, On t-dimensional Gersenne sequences and their symmetry properties, Symmetry 17 (2025), no. 7, Paper No. 1079, 16 pp. CatarinoP. SantosD. CostaE. On t-dimensional Gersenne sequences and their symmetry properties Symmetry 17 2025 7 Paper No. 1079, 16 pp Search in Google Scholar

P. Catarino and P. Vasco, Some basic properties and a two-by-two matrix involving the k-Pell numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 45, 2209–2215. CatarinoP. VascoP. Some basic properties and a two-by-two matrix involving the k-Pell numbers Int. J. Math. Anal. (Ruse) 7 2013 45 2209 2215 Search in Google Scholar

J. Chimpanzo, P. Catarino, and M. Otero-Espinar, Some identities and generating functions for bidimensional balancing and cobalancing sequences, Univ. J. Math. Appl. 7 (2024), no. 2, 68–75. ChimpanzoJ. CatarinoP. Otero-EspinarM. Some identities and generating functions for bidimensional balancing and cobalancing sequences Univ. J. Math. Appl. 7 2024 2 68 75 Search in Google Scholar

J. Chimpanzo, P. Catarino, and M. Otero-Espinar, Bidimensional balancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers via the determinant of a tridiagonal matrix, Indian J. Pure Appl. Math. (2025). https://doi.org/10.1007/s13226-025-00771-z. ChimpanzoJ. CatarinoP. Otero-EspinarM. Bidimensional balancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers via the determinant of a tridiagonal matrix Indian J. Pure Appl. Math. 2025 https://doi.org/10.1007/s13226-025-00771-z. Search in Google Scholar

J. Chimpanzo, P. Catarino, P. Vasco, and A. Borges, Bidimensional extensions of balancing and Lucas-balancing numbers, J. Discrete Math. Sci. Cryptogr. 27 (2024), no. 1, 95–115. ChimpanzoJ. CatarinoP. VascoP. BorgesA. Bidimensional extensions of balancing and Lucas-balancing numbers J. Discrete Math. Sci. Cryptogr. 27 2024 1 95 115 Search in Google Scholar

J. Chimpanzo, M. Otero-Espinar, A. Borges, P. Vasco, and P. Catarino, Bidimensional extensions of cobalancing and Lucas-cobalancing numbers, Ann. Math. Sil. 38 (2024), no. 2, 241–262. ChimpanzoJ. Otero-EspinarM. BorgesA. VascoP. CatarinoP. Bidimensional extensions of cobalancing and Lucas-cobalancing numbers Ann. Math. Sil. 38 2024 2 241 262 Search in Google Scholar

E. Costa, P. Catarino, F. Monteiro, V. Sousa, and D. Santos, Tricomplex Fibonacci numbers: a new family of Fibonacci-type sequences, Mathematics 12 (2024), no. 23, Paper No. 3723, 15 pp. CostaE. CatarinoP. MonteiroF. SousaV. SantosD. Tricomplex Fibonacci numbers: a new family of Fibonacci-type sequences Mathematics 12 2024 23 Paper No. 3723, 15 pp Search in Google Scholar

E. Costa, P. Catarino, P. Vasco, and F. Alves, A brief study on the k-dimensional Repunit sequence, Axioms 14 (2025), no. 2, Paper No. 109, 16 pp. CostaE. CatarinoP. VascoP. AlvesF. A brief study on the k-dimensional Repunit sequence Axioms 14 2025 2 Paper No. 109, 16 pp Search in Google Scholar

M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integers 9 (2009), no. 6, 639–654. EdsonM. YayenieO. A new generalization of Fibonacci sequence and extended Binet's formula Integers 9 2009 6 639 654 Search in Google Scholar

S. Falcón, On the generating matrices of the k-Fibonacci numbers, Proyecciones 32 (2013), no. 4, 347–357. FalcónS. On the generating matrices of the k-Fibonacci numbers Proyecciones 32 2013 4 347 357 Search in Google Scholar

S. Falcón, On the extended (k, t)-Fibonacci numbers, J. Adv. Math. Comput. Sci. 39 (2024), no. 7, 81–89. FalcónS. On the extended (k, t)-Fibonacci numbers J. Adv. Math. Comput. Sci. 39 2024 7 81 89 Search in Google Scholar

S. Falcón and Á. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624. FalcónS. PlazaÁ. On the Fibonacci k-numbers Chaos Solitons Fractals 32 2007 5 1615 1624 Search in Google Scholar

H.W. Gould, A history of the Fibonacci Q-matrix and a higher-dimensional problem, Fibonacci Quart. 19 (1981), no. 3, 250–257. GouldH.W. A history of the Fibonacci Q-matrix and a higher-dimensional problem Fibonacci Quart. 19 1981 3 250 257 Search in Google Scholar

C.J. Harman, Complex Fibonacci numbers, Fibonacci Quart. 19 (1981), no. 1, 82–86. HarmanC.J. Complex Fibonacci numbers Fibonacci Quart. 19 1981 1 82 86 Search in Google Scholar

A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly 68 (1961), no. 5, 455–459. HoradamA.F. A generalized Fibonacci sequence Amer. Math. Monthly 68 1961 5 455 459 Search in Google Scholar

A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), no. 3, 289–291. HoradamA.F. Complex Fibonacci numbers and Fibonacci quaternions Amer. Math. Monthly 70 1963 3 289 291 Search in Google Scholar

A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), no. 3, 161–176. HoradamA.F. Basic properties of a certain generalized sequence of numbers Fibonacci Quart. 3 1965 3 161 176 Search in Google Scholar

H. Hosoya, Fibonacci triangle, Fibonacci Quart. 14 (1976), no. 2, 173–179. HosoyaH. Fibonacci triangle Fibonacci Quart. 14 1976 2 173 179 Search in Google Scholar

J.H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quart. 3 (1965), no. 4, 315–318. JordanJ.H. Gaussian Fibonacci and Lucas numbers Fibonacci Quart. 3 1965 4 315 318 Search in Google Scholar

D. Kalman and R. Mena, The Fibonacci numbers–exposed, Math. Mag. 76 (2003), no. 3, 167–181. KalmanD. MenaR. The Fibonacci numbers–exposed Math. Mag. 76 2003 3 167 181 Search in Google Scholar

C.H. King, Some Properties of the Fibonacci Numbers, Master's thesis, San Jose State College, 1960. KingC.H. Some Properties of the Fibonacci Numbers Master's thesis, San Jose State College 1960 Search in Google Scholar

C. Kızılateş, P. Catarino, and N. Tuğlu, On the bicomplex generalized Tribonacci quaternions, Mathematics 7 (2019), no. 1, Paper No. 80, 8 pp. KızılateşC. CatarinoP. TuğluN. On the bicomplex generalized Tribonacci quaternions Mathematics 7 2019 1 Paper No. 80, 8 pp Search in Google Scholar

T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, John Wiley & Sons, Hoboken, NJ, 2017. KoshyT. Fibonacci and Lucas Numbers with Applications Volume 1, John Wiley & Sons Hoboken, NJ 2017 Search in Google Scholar

B. Kuloğlu and E. Özkan, On the (p, q)-Narayana n-dimensional recurrences, J. Sci. Arts 23 (2023), no. 3, 707–714. KuloğluB. ÖzkanE. On the (p, q)-Narayana n-dimensional recurrences J. Sci. Arts 23 2023 3 707 714 Search in Google Scholar

R. Oliveira and F. Alves, Os números Gaussianos de Fibonacci e relações recorrentes bidimensionais, Rev. Thema 16 (2019), no. 4, 745–754. OliveiraR. AlvesF. Os números Gaussianos de Fibonacci e relações recorrentes bidimensionais Rev. Thema 16 2019 4 745 754 Search in Google Scholar

R. Oliveira, F. Alves, and R. Paiva, Identidades bi e tridimensionais para os números de Fibonacci na forma complexa, C.Q.D. - Revista Eletrônica Paulista de Matemática 11 (2017), Edição Dezembro, 91–106. OliveiraR. AlvesF. PaivaR. Identidades bi e tridimensionais para os números de Fibonacci na forma complexa C.Q.D. - Revista Eletrônica Paulista de Matemática 11 2017 Edição Dezembro, 91 106 Search in Google Scholar

S. Pethe and A.F. Horadam, Generalised Gaussian Fibonacci numbers, Bull. Aust. Math. Soc. 33 (1986), no. 1, 37–48. PetheS. HoradamA.F. Generalised Gaussian Fibonacci numbers Bull. Aust. Math. Soc. 33 1986 1 37 48 Search in Google Scholar

B. Singh, O. Sikhwal, and Y. Gupta, Generalized Fibonacci–Lucas sequence, Turk. J. Anal. Number Theory 2 (2014), no. 6, 193–197. SinghB. SikhwalO. GuptaY. Generalized Fibonacci–Lucas sequence Turk. J. Anal. Number Theory 2 2014 6 193 197 Search in Google Scholar

N.J. Sloane et al., The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation Inc., https://oeis.org. SloaneN.J. The On-Line Encyclopedia of Integer Sequences The OEIS Foundation Inc. https://oeis.org. Search in Google Scholar

S. Uygun, Complex Jacobsthal numbers in two dimension, Sarajevo J. Math. 20(33) (2024), no. 2, 219–229. UygunS. Complex Jacobsthal numbers in two dimension Sarajevo J. Math. 20(33) 2024 2 219 229 Search in Google Scholar

S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, Chelmsford, MA, 2008. VajdaS. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications Courier Corporation Chelmsford, MA 2008 Search in Google Scholar

R. Vieira, F. Alves, and P. Catarino, Relações bidimensionais e identidades da sequência de Leonardo, Rev. Sergipana Mat. Educ. Mat. 4 (2019), no. 2, 156–173. VieiraR. AlvesF. CatarinoP. Relações bidimensionais e identidades da sequência de Leonardo Rev. Sergipana Mat. Educ. Mat. 4 2019 2 156 173 Search in Google Scholar

A. Wani, V. Badshah, G. Rathore, and P. Catarino, Generalized Fibonacci and k-Pell matrix sequences, Punjab Univ. J. Math. (Lahore) 51 (2020), no. 1, 17–28. WaniA. BadshahV. RathoreG. CatarinoP. Generalized Fibonacci and k-Pell matrix sequences Punjab Univ. J. Math. (Lahore) 51 2020 1 17 28 Search in Google Scholar

O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011), no. 12, 5603–5611. YayenieO. A note on generalized Fibonacci sequences Appl. Math. Comput. 217 2011 12 5603 5611 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Mathematics, General Mathematics