1. bookVolume 19 (2022): Issue 1 (June 2022)
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
Open Access

Underwater Image Detection for Cleaning Purposes; Techniques Used for Detection Based on Machine Learning

Published Online: 19 May 2022
Volume & Issue: Volume 19 (2022) - Issue 1 (June 2022)
Page range: 28 - 35
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English

[1] K. Wang, L. Shen, Y. Lin, M. Li, and Q. Zhao, “Joint iterative color correction and dehazing for underwater image enhancement,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5121–5128, 2021. Search in Google Scholar

[2] N. Panchi, E. Kim, and A. Bhattacharyya, “Supplementing remote sensing of ice: Deep learning-based image segmentation system for automatic detection and localization of sea-ice formations from close-range optical images,” IEEE Sensors Journal, vol. 21, no. 16, pp. 18 004–18 019, 2021.10.1109/JSEN.2021.3084556 Search in Google Scholar

[3] B. Song, K. Li, Y. Zong, J. Zhu, W. Zheng, J. Shi, and L. Zhao, “Recognizing spontaneous micro-expression using a three-stream convolutional neural network,” IEEE Access, vol. 7, pp. 184 537–184 551, 2019.10.1109/ACCESS.2019.2960629 Search in Google Scholar

[4] E. Lam, “Combining gray world and retinex theory for automatic white balance in digital photography,” in Proceedings of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005)., 2005, pp. 134–139. Search in Google Scholar

[5] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin Institute, vol. 310, no. 1, pp. 1–26, 1980. [Online]. Available: https://www.sciencedirect.com/science/article/pii/001600328090058710.1016/0016-0032(80)90058-7 Search in Google Scholar

[6] J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based color constancy,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2207–2214, 2007. Search in Google Scholar

[7] C.-C. Wang and H. Samani, “Object detection using transfer learning for underwater robot,” in 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2020, pp. 1–4.10.1109/ARIS50834.2020.9205774 Search in Google Scholar

[8] E.N.Transeau, “General botany,” Discovery Publishing House, 1994. Search in Google Scholar

[9] M. J. M. Christenhusz, “The kew plant glossary, an illustrated dictionary of plant terms,” Botanical Journal of the Linnean Society, vol. 164, no. 4, pp. 440–441, 2010. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8339.2010.01099.x10.1111/j.1095-8339.2010.01099.x Search in Google Scholar

[10] R. Dorothy, J. R M, J. Rathish, S. Prabha, S. Rajendran, and S. Joseph, “Image enhancement by histogram equalization,” International Journal of Nano Corrosion Science and Engineering, vol. 2, pp. 21–30, 09 2015. Search in Google Scholar

[11] T. T. Türkistanlı, C. Sevgili Ve, and Ö. Arslan, “Bibliometric analysis of the literature on marine mucilage,” in Avrupa Bilim ve Teknoloji Dergisi, sayı. 28, ss. 947-958, Kas. Search in Google Scholar

[12] G. F. C. Campos, S. M. Mastelini, G. J. Aguiar, R. G. Mantovani, L. F. d. Melo, and S. Barbon, “Machine learning hyperparameter selection for contrast limited adaptive histogram equalization,” EURASIP Journal on Image and Video Processing, vol. 2019, no. 1, p. 59, May 2019. [Online]. Available: https://doi.org/10.1186/s13640-019-0445-410.1186/s13640-019-0445-4 Search in Google Scholar

[13] G. Vasile, A. Girard, G. d’Urso, E. de Oliveira, F. Hieramente, and O. Philippe, “Active acoustic signature extraction by machine learning data analysis for underwater fish counters,” in Global Oceans 2020: Singapore – U.S. Gulf Coast, 2020, pp. 1–4.10.1109/IEEECONF38699.2020.9389105 Search in Google Scholar

[14] A. Łysiak and M. Szmajda, “Empirical comparison of the feature evaluation methods based on statistical measures,” IEEE Access, vol. 9, pp. 27 868–27 883, 2021.10.1109/ACCESS.2021.3058428 Search in Google Scholar

[15] A. K. Malik, M. Ganaie, M. Tanveer, and P. Suganthan, “A novel ensemble method of rvfl for classification problem,” in 2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–8.10.1109/IJCNN52387.2021.9533836 Search in Google Scholar

[16] M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. Regazzoni, and N. Sebe, “Abnormal event detection in videos using generative adversarial nets,” 09 2017.10.1109/ICIP.2017.8296547 Search in Google Scholar

[17] X. Li, M. Shang, H. Qin, and L. Chen, “Fast accurate fish detection and recognition of underwater images with fast r-cnn,” in OCEANS 2015 - MTS/IEEE Washington, 2015, pp. 1–5. Search in Google Scholar

[18] “Rete neurale convoluzionale,” http://nl.mathworks.com/discovery/convolutional-neural-network-matlab.html..html, accessed: 2022-02-27. Search in Google Scholar

[19] M. Vanderklift, D. Bearham, M. Haywood, H. Lozano-Montes, R. Mccallum, J. McLaughlin, K. Mcmahon, N. Mortimer, and P. Lavery, “Natural dynamics: understanding natural dynamics of seagrasses in north-western australia wamsi dredging science node report,” 10 2016. Search in Google Scholar

[20] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G. Kendrick, and R. Fisher, “Coral classification with hybrid feature representations,” in 2016 IEEE International Conference on Image Processing (ICIP). United States: Institute of Electrical and Electronics Engineers (IEEE), Sep. 2016, pp. 519–523, 2016 IEEE International Conference on Image Processing, ICIP 2016; Conference date: 25-09-2016 Through 28-09-2016. [Online]. Available: https://www2.securecms.com/ICIP2016/Default.asp Search in Google Scholar

[21] J. Dai, R. Wang, H. Zheng, G. Ji, and X. Qiao, “Zooplanktonet: Deep convolutional network for zooplankton classification,” in OCEANS 2016 - Shanghai, 2016, pp. 1–6.10.1109/OCEANSAP.2016.7485680 Search in Google Scholar

[22] “R-cnn, fast r-cnn, faster r-cnn, yolo - object detection algorithms,” http://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e, accessed: 2022-02-27. Search in Google Scholar

[23] P. Lavery, K. Mcmahon, J. Weyers, M. Boyce, and C. Oldham, “Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity,” Marine Ecology Progress Series, vol. 494, pp. 121–133, 12 2013.10.3354/meps10554 Search in Google Scholar

[24] M. Moniruzzaman, S. Islam, M. Bennamoun, and P. Lavery, “Deep learning on underwater marine object detection: A survey,” 11 2017, pp. 150–160.10.1007/978-3-319-70353-4_13 Search in Google Scholar

[25] S. Iqbal, G. F. Siddiqui, A. Rehman, L. Hussain, T. Saba, U. Tariq, and A. A. Abbasi, “Prostate cancer detection using deep learning and traditional techniques,” IEEE Access, vol. 9, pp. 27 085–27 100, 2021.10.1109/ACCESS.2021.3057654 Search in Google Scholar

[26] A. M. Santilli, A. Jamzad, A. Sedghi, M. Kaufmann, S. Merchant, J. Engel, K. Logan, J. Wallis, N. Janssen, S. Varmak, G. Fichtinger, J. F. Rudan, and P. Mousavi, “Self-supervised learning for detection of breast cancer in surgical margins with limited data,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 980–984.10.1109/ISBI48211.2021.9433829 Search in Google Scholar

[27] L. Kouhalvandi, L. Matekovits, and I. Peter, “Deep learning and its benefits in prediction of patients through medical images,” in 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2021, pp. 139–142.10.1109/CHASE52844.2021.00033 Search in Google Scholar

[28] O. Beijbom, P. Edmunds, D. Kline, B. Mitchell, and D. Kriegman, “Automated annotation of coral reef survey images,” 06 2012, pp. 1170–1177.10.1109/CVPR.2012.6247798 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo