1. bookVolume 18 (2021): Issue 2 (December 2021)
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

Software Solution Integrated in Three-Dimensional Technologies for Preoperative Planning of Tibial Plateau Fractures

Published Online: 15 Nov 2021
Volume & Issue: Volume 18 (2021) - Issue 2 (December 2021)
Page range: 1 - 6
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
Abstract

Background: Planning in orthopedic surgery can be supported by various virtual reconstruction and tri-dimensional (3D) segmentation programs, but this topic requires further study to identify software solutions that make the process duration more efficient. Objective: To validate 3D software solutions that integrates 3D technologies for patient-specific applications in orthopedics in order to minimize the extent of surgery. Method: We have used the Democratiz3D software solution for patient-specific modeling and surgical planning. Results: Validation of the proposed methodology was performed for the preoperative planning of a 28-year-old male patient who had a Schatzker type II tibial plateau fracture. Conclusion: The 3D planning capabilities of the software solution are a valuable tool for surgeons in exploring the nature of fractures and formulating an appropriate surgical plan which creates perspectives for personalized surgery.

Keywords

[1] Grunz, J.P., Gietzen, C.H., Schmitt, R. and Prommersberger, K.J. (2018), Distale Radiusfrakturen: Update zur Bildgebung [Distal radius fractures: Update on imaging]. Radiologe, vol. 58(2), pp. 159–174.10.1007/s00117-017-0352-629368159 Search in Google Scholar

[2] Johnson, P.T., Fayad, L.M. and Fishman. E.K. (2006), Sixteen-slice CT with volumetric analysis of foot fractures. Emerg Radiol., vol. 12(4), pp. 171–6.10.1007/s10140-006-0469-916568280 Search in Google Scholar

[3] Keil, H., Beisemann, N., Swartman, B., Vetter, S.Y., Grützner, P.A. and Franke, J. (2018), Intraoperative imaging in trauma surgery. EFORT Open Rev., vol. 3(10), pp. 541–549.10.1302/2058-5241.3.170074633559230662762 Search in Google Scholar

[4] Moldovan, F., Gligor, A. and Bataga T. (2020), Integration of Three-dimensional Technologies in Orthopedics: A Tool for Preoperative Planning of Tibial Plateau Fractures. Acta Inform Med., vol. 28(4), pp. 278–282.10.5455/aim.2020.28.278-282787945533627930 Search in Google Scholar

[5] Weimann, A., Heinkele, T., Herbort, M., Schliemann, B., Tetersen, W. and Raschke, M.J. (2013), Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: A biomechanical study. BMC Musculoskeletal Disorders, vol. 14: 120.10.1186/1471-2474-14-120364097623557098 Search in Google Scholar

[6] Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A.A., Cai, T., Kumamaru, K.K,, et al. (2015), Medical 3D printing for the radiologist. Radiographics, vol. 35(7), pp. 1965–1988.10.1148/rg.2015140320467142426562233 Search in Google Scholar

[7] Bizzotto, N., Tami, I., Santucci, A., Adani, R., Poggi, P., Romani, D., et al. (2016), 3D Printed replica of articular fractures for surgical planning and patient consent: A two years multi-centric experience. 3D Printing in Medicine, vol. 2(2), pp. 1–6.10.1186/s41205-016-0006-8603666330050974 Search in Google Scholar

[8] Moldovan, F., Gligor, A. and Bataga, T. (2021), Structured Integration and Alignment Algorithm: A Tool for Personalized Surgical Treatment of Tibial Plateau Fractures. J. Pers. Med., vol. 11: 190.10.3390/jpm11030190799930733802117 Search in Google Scholar

[9] Vlachopoulos, L., Székely, G., Gerber, C. and Fürnstahl, P. (2018), A scale-space curvature matching algorithm for the reconstruction of complex proximal humeral fractures. Med Image Anal., vol. 43, pp. 142–156.10.1016/j.media.2017.10.00629102769 Search in Google Scholar

[10] Huang, H., Hsieh, M.F., Zhang, G., Ouyang, H., Zeng, C., Yan, B., et al. (2015), Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery. Australas Phys Eng Sci Med., vol. 38(1), pp. 109–117.10.1007/s13246-015-0330-025663390 Search in Google Scholar

[11] Huang, H., Zhang, G., Ouyang, H., Yang, Y., Wu, Z., Xu, J., et al. (2015), Internal fixation surgery planning for complex tibial plateau fracture based on digital design and 3D printing. J South Med Univ., vol. 35(2), pp. 218–222. Search in Google Scholar

[12] Giannetti, S., Bizzotto, N., Stancati, A. and Santuci, A. (2017), Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing. Injury, vol. 48(3), pp. 784–788.10.1016/j.injury.2016.11.01527889111 Search in Google Scholar

[13] Gemalmaz, H.C., Sarıyılmaz, K., Ozkunt, O., Sungur, M., Kaya, I. and Dikici, F. (2019), Postoperative mechanical alignment analysis of total knee replacement patients operated with 3D printed patient-specific instruments: a prospective cohort study. Acta Orthop Traumatol Turc., vol. 53(5), pp. 323–328.10.1016/j.aott.2019.02.001681978930853398 Search in Google Scholar

[14] Cucchi, D., Menon, A., Aliprandi, A., Soncini, G., Zanini, B., Ragone, V., et al. (2019), Patient-specific instrumentation affects rotational alignment of the femoral component in total knee arthroplasty: A prospective randomized controlled trial. J Orthop Surg., vol. 11(1), pp. 75–81.10.1111/os.12420643048730834703 Search in Google Scholar

[15] Vaishya, R., Vijay, V., Birla, V.P. and Agarwal AK. (2016), Computerized tomography based “patient-specific blocks” improve postoperative mechanical alignment in primary total knee arthroplasty. World Journal of Orthopedics, vol. 7(7), pp. 426–433.10.5312/wjo.v7.i7.426494550927458553 Search in Google Scholar

[16] Javaid, M. and Haleem, A. (2018), Additive manufacturing applications in orthopedics: a review. J Clin Orthop Trauma, vol. 9(3), pp. 202–206.10.1016/j.jcot.2018.04.008612830330202149 Search in Google Scholar

[17] Di Paolo, M., Maiese, A., dell’Aquila, M., Filomena, C., Turco, S., Giaconi, C. and Turillazzi, E. (2020), Role of post mortem CT (PMCT) in high energy traumatic deaths. Clin Ter., vol. 171(6):e490–e500. Search in Google Scholar

[18] Suero, E.M., Hufner, T., Stubig, T., Krettek, C. and Citak, M. (2010), Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. Injury, vol. 41(6), pp. 589–591.10.1016/j.injury.2009.10.05319939376 Search in Google Scholar

[19] Ribeiro, J., Alves, V., Silva, S. and Campos, J. (2015), A 3D computed tomography based tool for orthopedic surgery planning. Published in: Developments in Medical Image Processing and Computational Vision. Springer International Publishing. Editors: João Manuel R. S. Tavares, Renato Natal Jorge, pp.121–138.10.1007/978-3-319-13407-9_8 Search in Google Scholar

[20] Graul, I., Marintschev, I., Rausch, S., Eckart, N., Hofmann, G.O. and Gras, F. (2019), Effect of different multiplanar reformation algorithms on image quality of intraoperative three-dimensional fluoroscopy. J Hand Surg Eur., vol. 44(7), pp. 738–744.10.1177/175319341984896331117866 Search in Google Scholar

[21] Giambini, H., Dragomir-Daescu, D., Nassr, A., Yaszemski, M.J. and Zhao, C. (2016), Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness. J Biomech Eng., vol. 138(9):0910031–7.10.1115/1.4034172496788127428281 Search in Google Scholar

[22] ***https://www.embodi3d.com/democratiz3D/. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo