1. bookVolume 18 (2021): Issue 1 (June 2021)
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

Satellite-Derived Bathymetry Using Landsat-8 Imagery for Safaga Coastal Zone, Egypt

Published Online: 29 May 2021
Volume & Issue: Volume 18 (2021) - Issue 1 (June 2021)
Page range: 8 - 15
Journal Details
License
Format
Journal
eISSN
2668-4217
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
Abstract

Satellite-Derived Bathymetry (SDB) modeling is used to derive bathymetric data needed for enriching several applications including nautical charting. The nautical charts of Safaga port, Egypt, contains significant gaps as they are based on 50-years old hydrographic survey data and it needs an update. We applied the SDB algorithm (log-ratio approach) using multispectral Landsat-8 OLI images for extracting bathymetry to update the nautical charts of SAFAGA port. The results are verified against the old nautical chart of SAFAGA with a coefficient of determination (R2) varies between 0.42 to 0.71 in areas where hydrographic data are old, unavailable or costly to obtain.

Keywords

[1] S. Smara, C. Bouchon, and R. Maniere, “Remote sensing techniques adapted to high resolution mapping of tropical coastal marine ecosystems (coral reefs, seagrass beds and mangrove),” Int. J. Remote Sens., vol. 19, no. 18, pp. 3625–3639, 1998, doi: 10.1080/014311698213858.10.1080/014311698213858 Search in Google Scholar

[2] S. J. Purkis et al., “High-resolution habitat and bathymetry maps for 65,000 sq. km of Earth’s remotest coral reefs,” Coral Reefs, vol. 38, no. 3, pp. 467–488, 2019, doi: 10.1007/s00338-019-01802-y.10.1007/s00338-019-01802-y Search in Google Scholar

[3] S. Nayak, “Role of remote sensing to integrated coastal zone management,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 35, 2004. Search in Google Scholar

[4] E. M. Louchard, R. P. Reid, F. C. Stephens, C. O. Davis, R. A. Leathers, and T. V. Downes, “Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach,” Limnol. Oceanogr., vol. 48, no. 1 II, pp. 511–521, 2003, doi: 10.4319/lo.2003.48.1_part_2.0511.10.4319/lo.2003.48.1_part_2.0511 Search in Google Scholar

[5] J. L. Irish and W. J. Lillycrop, “Scanning laser mapping of the coastal zone: The SHOALS system,” ISPRS J. Photogramm. Remote Sens., vol. 54, no. 2–3, pp. 123–129, Jul. 1999, doi: 10.1016/S0924-2716(99)00003-9.10.1016/S0924-2716(99)00003-9 Search in Google Scholar

[6] T. Sagawa, Y. Yamashita, T. Okumura, and T. Yamanokuchi, “Satellite derived bathymetry using machine learning and multi-temporal satellite images,” Remote Sens., vol. 11, no. 10, 2019, doi: 10.3390/rs11101155.10.3390/rs11101155 Search in Google Scholar

[7] V. Poliyapram, V. Raghavan, M. Metz, L. Delucchi, and S. Masumoto, “Implementation of algorithm for satellite-derived bathymetry using open source GIS and evaluation for tsunami simulation,” ISPRS Int. J. Geo-Information, vol. 6, no. 3, pp. 1–17, 2017, doi: 10.3390/ijgi6030089.10.3390/ijgi6030089 Search in Google Scholar

[8] B. A. K. Mavraeidopoulos, A. Pallikaris, and E. Oikonomou, “Satellite Derived Bathymetry (SDB) and Safety of Navigation,” Int. Hydrogr. Rev., vol. 0, no. 17, pp. 7–20, 2018. Search in Google Scholar

[9] C. D. Mobley, “Within the Water,” Light waters. Radiat. Transf. Nat. Waters, no. 1992, pp. 236–318, 1986. Search in Google Scholar

[10] T. M. El-geziry, “General pattern of sea level in Safaga and Qusseir Harbours on the Egyptian Red Sea coast,” 2020.10.1007/s12517-020-05447-y Search in Google Scholar

[11] P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng., vol. 116, no. 1, pp. 560–566, 2015, doi: 10.1016/j.proeng.2015.08.326.10.1016/j.proeng.2015.08.326 Search in Google Scholar

[12] S. Pe’eri, C. Parrish, C. Azuike, L. Alexander, and A. Armstrong, “Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness,” Mar. Geod., vol. 37, no. 3, pp. 293–314, 2014, doi: 10.1080/01490419.2014.902880.10.1080/01490419.2014.902880 Search in Google Scholar

[13] J. F. Bramante, D. K. Raju, and T. M. Sin, “Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters,” Int. J. Remote Sens., vol. 34, no. 6, pp. 2070–2088, 2013, doi: 10.1080/01431161.2012.734934.10.1080/01431161.2012.734934 Search in Google Scholar

[14] I. Gebco, “The,” no. October, 2019. Search in Google Scholar

[15] R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr., vol. 48, no. 1 II, pp. 547–556, 2003, doi: 10.4319/lo.2003.48.1_part_2.0547.10.4319/lo.2003.48.1_part_2.0547 Search in Google Scholar

[16] Z. Deng, M. Ji, and Z. Zhang, “Mapping Bathymetry From Multi-S Ource Remote Sensing Images: a Case Study in the Beilun Estuary, Guangxi, China,” Int. Arch. Photogr ammetry, Remote Sens. Spat. Inf. Sci., vol. 37, pp. 1321–1326, 2008. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo