1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English
Open Access

Design of a linear regression model-based Internet exit anomaly detection method

Published Online: 26 Aug 2023
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 08 Sep 2022
Accepted: 06 Mar 2022
Journal Details
License
Format
Journal
eISSN
2444-8656
First Published
01 Jan 2016
Publication timeframe
2 times per year
Languages
English

Xie, K., Li, X., Wang, X., et al. (2017). Fast tensor factorization for accurate internet anomaly detection. IEEE/ACM Transactions on Networking, 25(6), 3794-3807. Search in Google Scholar

Forestiero, A. (2021). Metaheuristic algorithm for anomaly detection in Internet of Things leveraging on a neural-driven multiagent system. Knowledge-Based Systems, 228, 107241. Search in Google Scholar

Wang, J., Tang, Y., He, S., et al. (2020). LogEvent2vec: LogEvent-to-vector based anomaly detection for large-scale logs in Internet of Things. Sensors, 20(9), 2451. Search in Google Scholar

NG, B. A., & Selvakumar, S. (2020). Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Generation Computer Systems, 113, 255-265. Search in Google Scholar

Reddy, D. K. K., Behera, H. S., Nayak, J., et al. (2021). Deep neural network-based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities. Transactions on Emerging Telecommunications Technologies, 32(7), e4121. Search in Google Scholar

Aljawarneh, S. A., & Vangipuram, R. (2020). GARUDA: Gaussian dissimilarity measure for feature representation and anomaly detection in Internet of things. The Journal of Supercomputing, 76(6), 4376-4413. Search in Google Scholar

Genge, B., Haller, P., & Enăchescu, C. (2019). Anomaly detection in aging industrial Internet of Things. IEEE Access, 7, 74217-74230. Search in Google Scholar

Yanagisawa, D., & Yamazaki, K. (2021). Detecting aggressive agents in egress process by using conflict data in cellular automaton model. Journal of Intelligent Transportation Systems, (4), 1-18. Search in Google Scholar

Ullah, I., & Mahmoud, Q. H. (2021). Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access, PP(99), 1-1. Search in Google Scholar

Leman Akoglu, Hanghang Tong, Danai Koutra. (2015). Graph-based anomaly detection and description: a survey. Data Mining and Knowledge Discovery, 29, 626-688. Search in Google Scholar

Mothukuri, V., Khare, P., Parizi, R. M., et al. (2021). Federated-Learning-Based Anomaly Detection for IoT Security Attacks. IEEE Internet of Things Journal, 9(4), 2545-2554. Search in Google Scholar

Cook, A. A., Mısırlı, G., Fan, Z. (2019). Anomaly detection for IoT time-series data: A survey. IEEE Internet of Things Journal, 7(7), 6481-6494. Search in Google Scholar

Bahaa Al-Musawi, Philip Branch, Grenville Armiage. (2016). BGP Anomaly Detection Techniques: A Survey. IEEE Communications Surveys & Tutorials, 2622, 2240. Search in Google Scholar

Tama, B. A., Nkenyereye, L., Islam, S. M. R., et al. (2020). An enhanced anomaly detection in web traffic using a stack of classifier ensemble. IEEE Access, 8, 24120-24134. Search in Google Scholar

Xie, K., Li, X., Wang, X., et al. (2018). On-line anomaly detection with high accuracy. IEEE/ACM Transactions on Networking, 26(3), 1222-1235. Search in Google Scholar

Emmendorfer, L. R., & Dimuro, G. P. (2021). A point interpolation algorithm resulting from weighted linear regression. Journal of Computational Science, 50(3). Search in Google Scholar

Nawaratne, R., Alahakoon, D., De Silva, D., et al. (2019). Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Transactions on Industrial Informatics, 16(1), 393-402. Search in Google Scholar

Ahmed, A. A. M., Sharma, E., Jui, S. J. J., Deo, R. C., Nguyen-Huy, T., & Ali, M. (2022). Kernel ridge regression hybrid method for wheat yield prediction with sate llite-derived predictors. Re mote Sensing, 14. Search in Google Scholar

Recommended articles from Trend MD