Open Access

Research on Employment and Entrepreneurship Potential Mining and Cultivation Mechanism of College Students Based on Decision Tree Modeling

  
Sep 26, 2025

Cite
Download Cover

Figure 1.

Flowchart of the C4.5 algorithm
Flowchart of the C4.5 algorithm

Figure 2.

Decision tree prediction model of “Whether employment can be smooth”
Decision tree prediction model of “Whether employment can be smooth”

Figure 3.

Gain evaluation curve
Gain evaluation curve

Figure 4.

Improvement curve
Improvement curve

Figure 5.

Logic diagram of factor analysis
Logic diagram of factor analysis

Figure 6.

Factors affecting the employment quality of college students
Factors affecting the employment quality of college students

Figure 7.

Scree plot
Scree plot

Rules for the classification of successful employment

Number Rule Conclusion
1 Grades less than 85 points and cadres=No and political identity=Non-party and source=Central region Employment
2 Grades less than 85 points and cadres=No and political identity=Non-party and source=Eastern region Unemployment
3 Grades less than 85 points and cadres=No and political identity=Non-party and source=Western region Employment
4 Grades less than 85 points and cadres=No and political identity=Party and source=Central region Employment
5 Grades less than 85 points and cadres=No and political identity=Party and source=Eastern region Employment
6 Grades less than 85 points and cadres=No and political identity=Party and source=Western region Unemployment
7 Grades less than 85 points and cadres=Yes Employment
8 Grade greater than 85 points and source of land =Central area Employment
9 Achievement = greater than 85 points and raw land = east region and political identity = non-party member Employment
10 Achievement = greater than 85 points and origin = eastern region and political identity = Party member and cadre = No Employment
11 This cable = more than 85 points and origin = eastern region and political identity = party member and cadre = Yes Unemployment
12 Achievement-greater than 85 points and origin = western region and cadre=No Employment
13 Achievement = more than 85 points and the western region of the origin and, the cadre is and political identity = non-party member Employment
14 Achievement = more than 85 points and origin = western region and, cadre is and political identity = party member Unemployment

The accuracy of graduation prediction

Government agencies/institutions, state-owned enterprises Promotion Foreign enterprises, private enterprises Freelancing Acc/%
Government agencies/institutions, state-owned enterprises 241 15 17 19 82.53
Promotion 15 267 14 18 85.03
Foreign enterprises, private enterprises 27 24 262 18 79.15
Freelancing 14 15 12 222 84.41

Eigenvalue and variance contribution rate

Factor eigenvalue Variance contribution(%) Cumulative(%)
1 5.278 36.955% 36.955%
2 2.196 15.356% 52.311%
3 1.906 13.335% 65.646%
4 1.113 7.752% 73.398%
5 0.868 6.083% 79.481%
6 0.798 5.602% 85.083%
7 0.685 4.750% 89.833%
8 0.473 3.287% 93.120%
9 0.350 2.451% 95.571%
10 0.263 1.803% 97.374%
11 0.161 1.189% 98.563%
12 0.095 0.657% 99.220%
13 0.077 0.541% 99.761%
14 0.022 0.123% 99.884%
15 0.021 0.116% 100.000%

The table of Income classification

Evaluation index Evaluation criteria Evaluation level
Remuneration St≥1.5Sd A
1.5 Sd > St≥1.2 Sd B
1.2 Sd > St≥0.8 Sd C
0.8 Sd > St≥0.5 Sd D
0.5 Sd >St E

Analyzes the properties of college graduates’ employment

Employment Cadre Source information Grade Political identity Gender
Employment Cor 1.000 0.755 0.705 0.822 0.584 0.085
Sig.2 0.000 0.000 0.000 0.000 0.000 0.156
N 1200 1200 1200 1200 1200 1200
Cadre Cor 0.728 1.000 0.516 0.638 0.451 0.003
Sig.2 0.000 0.000 0.000 0.000 0.000 0.566
N 1200 1200 1200 1200 1200 1200
Source information Cor 0.705 0.511 1.000 0.584 0.412 0.035
Sig.2 0.000 0.000 0.000 0.000 0.000 0.563
N 1200 1200 1200 1200 1200 1200
Grade Cor 0.825 0.634 0.595 1.000 0.0477 0.035
Sig.2 0.000 0.000 0.000 0.000 0.000 0.000
N 1200 1200 1200 1200 1200 1200
Political identity Cor 0.559 0.454 0.412 0.485 1.000 0.042
Sig.2 0.000 0.000 0.000 0.000 0.000 0.000
N 1200 1200 1200 1200 1200 1200
Gender Cor 0.085 0.001 0.033 0.031 0.045 1.000
Sig.2 0.158 0.981 0.566 0.000 0.000 0.000
N 1200 1200 1200 1200 1200 1200

Correlation matrix

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
X1 1.000 0.643 0.524 0.492 -0.152 0.153 -0.311 0.308 -0.252 0.365 -0.189 0.303 0.109 0.061 0.251
X2 0.636 1.000 0.762 0.162 0.043 -0.112 0.118 0.308 -0.174 0.275 -0.557 0.456 -0.426 0.036 0.317
X3 0.526 0.761 1.000 0.246 0.23 0.027 -0.428 -0.383 0.1 0.469 0.158 0.122 0.169 0.353 0.281
X4 0.491 0.168 0.25 1.000 0.647 0.369 0.338 0.405 0.005 0.063 -0.103 -0.033 0.198 0.384 0.398
X5 -0.554 0.049 0.212 0.378 1.000 0.434 0.401 -0.434 0.194 -0.01 0.299 -0.301 0.173 0.306 0.209
X6 0.145 -0.118 0.029 0.337 0.438 1.000 0.388 0.314 0.18 -0.067 -0.509 0.248 0.498 0.25 0.351
X7 -0.318 0.127 -0.425 0.407 0.414 0.398 1.000 -0.198 -0.084 -0.448 0.063 -0.555 0.206 0.135 0.263
X8 0.302 0.299 -0.372 0.006 -0.431 0.313 -0.193 1.000 0.658 0.524 0.752 -0.307 0.457 0.143 0.273
X9 -0.261 -0.185 0.098 0.07 0.192 0.173 -0.104 0.653 1.000 0.295 0.473 0.029 0.39 0.056 0.416
X10 0.36 0.283 0.468 -0.103 0.009 -0.072 -0.448 0.532 0.311 1.000 0.399 0.086 0.22 0.124 0.416
X11 -0.18 -0.558 0.155 -0.031 0.298 -0.501 0.056 0.75 0.467 0.393 1.000 -0.027 -0.02 0.127 0.494
X12 0.305 0.451 0.119 0.192 -0.299 0.24 -0.55 -0.318 0.03 0.08 -0.035 1.000 0.667 0.396 0.399
X13 0.101 -0.42 0.161 0.382 0.174 0.494 0.198 0.458 0.389 0.227 -0.019 0.654 1.000 0.471 0.524
X14 0.062 0.032 0.37 0.397 0.313 0.257 0.143 0.138 0.062 0.119 0.134 0.392 0.471 1.000 0.351
X15 0.25 0.313 0.294 0.109 0.215 0.347 0.26 0.272 0.416 0.402 0.485 0.4 0.524 0.347 1

Rotated component matrix

Measuring factor Public factor
1 2 3 4
X1 0.926 0.078 0.126 0.078
X2 0.728 0.197 0.157 -0.022
X3 0.937 0.123 0.152 0.052
X4 0.565 0.735 0.073 0.448
X5 0.322 0.798 0.166 0.219
X6 0.277 0.852 0.051 0.131
X7 0.142 0.865 0.149 -0.059
X8 0.162 -0.068 0.902 0.114
X9 0.109 0.326 0.774 0.134
X10 -0.030 0.185 0.856 -0.009
X11 0.084 0.138 0.781 0.101
X12 -0.077 -0.496 0.728 0.007
X13 0.185 0.128 0.255 0.814
X14 -0.091 0.109 0.017 0.806
X15 0.420 0.215 0.006 0.640

Component matrix

Measuring factor Public factor
1 2 3 4
X1 0.526 0.480 0.255 -0.304
X2 0.345 0.201 0.266 -0.019
X3 0.429 0.385 0.089 0.358
X4 0.170 0.256 0.202 0.209
X5 0.388 0.515 0.468 0.189
X6 0.423 0.421 0.210 0.393
X7 0.515 0.463 0.462 -0.122
X8 0.495 -0.322 0.674 0.387
X9 0.457 0.427 0.360 0.296
X10 -0.389 0.268 0.294 0.193
X11 0.301 0.315 0.291 0.309
X12 -0.138 -0.105 0.292 0.312
X13 0.205 0.289 0.360 0.404
X14 -0.210 0.419 0.309 0.407
X15 0.289 0.342 0.210 0.355

Property values and conversion value comparison

Attribute classification Attribute name Attribute value Conversion value
Basic attribute Gender Male and female 1, 0
Political identity Party member 1, 0
Source information Eastern region, central region, western region 1, 0, -1
Whether to be a student cadre Yes, no 1, 0
Comprehensive achievement 85 points above 85 points 1, 0
Job category Teaching personnel and non-teaching personnel 1, 0
Job matching Match, mismatch Y, N
Predictive attribute Employment situation Employment and employment 1, 0, -1

Component score coefficient matrix

Measuring factor Public factor
1 2 3 4
X1 0.088 -0.019 0.056 0.047
X2 -0.268 0.019 0.282 -0.026
X3 0.099 -0.039 0.172 -0.102
X4 -0.157 -0.040 0.360 -0.016
X5 0.067 -0.272 -0.003 0.065
X6 0.071 -0.258 0.009 0.025
X7 -0.080 0.055 -0.212 0.014
X8 -0.009 0.080 0.199 -0.103
X9 -0.011 -0.120 0.253 0.124
X10 -0.003 0.157 0.175 -0.179
X11 0.266 0.243 -0.084 0.100
X12 0.128 -0.204 -0.074 0.007
X13 0.136 0.021 0.122 0.202
X14 0.107 0.072 -0.047 0.070
X15 0.005 0.120 0.031 0.137
Language:
English