Pattern Recognition and Deep Semantic Network Analysis Techniques for Rhetorical Devices in English Literary Texts
Mar 19, 2025
About this article
Published Online: Mar 19, 2025
Received: Oct 16, 2024
Accepted: Feb 09, 2025
DOI: https://doi.org/10.2478/amns-2025-0540
Keywords
© 2025 Jianfu Tang, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

MPA_MTC and ATT-LSTM attention weight contrast
Serial number | Target word | Model | Visual LSTM weight visualization | Forecast | Actual |
---|---|---|---|---|---|
(1) | Gong yuan | ATT-LSTM | Gong yuan li de hua jing xiang kai fang. | Positive | Positive |
Ours | Gong yuan li de hua jing xiang kai fang. | Positive | |||
(2) | Gong si | ATT-LSTM | Gong si jue ding yin ru yi tao guan li xi tong. | Negativity | Negativity |
Ours | Gong si jue ding yin ru yi tao guan li xi tong. | Negativity | |||
(3) | Tian qi | ATT-LSTM | Jin tian tian qi zhen hao. | Positive | Negativity |
Ours | Jin tian tian qi zhen hao. | Negativity | |||
(4) | Wo | ATT-LSTM | Wo kan le yi bu dian ying. | Positive | Negativity |
Ours | Wo kan le yi bu dian ying. | Negativity |
Different factors and the results of the experimental results
model | Acc | F1 (neg.) | F1 (pos.) | F1 (avg.) |
---|---|---|---|---|
LSTM | 0.745 | 0.739 | 0.775 | 0.749 |
ATT-LSTM | 0.754 | 0.737 | 0.76 | 0.756 |
TRAT-LSTM | 0.766 | 0.768 | 0.773 | 0.77 |
MPA_MTC | 0.776 | 0.778 | 0.776 | 0.773 |
Ours | 0.795 | 0.784 | 0.794 | 0.789 |
Convolution neural network model parameters
Model layer name | size | Algorithm/method |
---|---|---|
Input layer | 180*128 | Longitudinal stack |
Convolution layer | 3*128,4*128,5*128 | Relu activation function |
Pooling layer | 176*1,177*1,178*1 | Max-Pooling |
Full junction | 128 | The relu Dropout strategy |
Example of LSTMweight value
Numbering | LSTM weight | ||||
---|---|---|---|---|---|
Gong si | Jue ding | Yin ru | Yi tao | Guan li xi tong. | |
(a) | 0.067 | 0.063 | 0.053 | 0.031 | 0.045 |
(b) | 0.361 | 0.049 | 0.495 | 0.035 | 0.052 |
(c) | 0.52 | 0.067 | 0.297 | 0.043 | 0.055 |
The results of different models on CSR were compared to (%)
Model | Precision | Recall | F1-score |
---|---|---|---|
SC | 77.61 | 88.77 | 82.87 |
MTL-SC | 80.77 | 92.09 | 86.3 |
Self_Attn+Pos | 80.35 | 91.94 | 85.41 |
Cyc-MTL-SC | 85.91 | 94.93 | 90.03 |
HGSR | 89.29 | 94.79 | 91.68 |
Ours | 91.24 | 91.22 | 90.73 |