Open Access

A Study on the Integrated Application of Deep Learning and Semantic Analysis Techniques in Sentiment Interpretation of Medical Texts

, , , ,  and   
Mar 19, 2025

Cite
Download Cover

Yang, Y., Zhuang, Y., & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558. Yang Y. Zhuang Y. Pan Y. ( 2021 ). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies . Frontiers of Information Technology & Electronic Engineering , 22 ( 12 ), 1551 - 1558 . Search in Google Scholar

Wang, H. (2021). Multi-sensor fusion module for perceptual target recognition for intelligent machine learning visual feature extraction. IEEE Sensors Journal, 21(22), 24993-25000. Wang H. ( 2021 ). Multi-sensor fusion module for perceptual target recognition for intelligent machine learning visual feature extraction . IEEE Sensors Journal , 21 ( 22 ), 24993 - 25000 . Search in Google Scholar

Wang, Y., Widrow, B. C., Zadeh, L. A., Howard, N., Wood, S., Bhavsar, V. C., & Shell, D. F. (2020). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 1500-1523). IGI Global. Wang Y. Widrow B. C. Zadeh L. A. Howard N. Wood S. Bhavsar V. C. Shell D. F. ( 2020 ). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems . In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 1500 - 1523 ). IGI Global . Search in Google Scholar

Bringsjord, S., Govindarajulu, N. S., & Oswald, J. (2023). Universal Cognitive Intelligence, from Cognitive Consciousness, and Lambda (Λ). In Computational Approaches to Conscious Artificial Intelligence (pp. 127-167). Bringsjord S. Govindarajulu N. S. Oswald J. ( 2023 ). Universal Cognitive Intelligence, from Cognitive Consciousness, and Lambda (Λ) . In Computational Approaches to Conscious Artificial Intelligence (pp. 127 - 167 ). Search in Google Scholar

Lenci, A., & Padó, S. (2022). Perspectives for natural language processing between AI, linguistics and cognitive science. Frontiers in Artificial Intelligence, 5, 1059998. Lenci A. Padó S. ( 2022 ). Perspectives for natural language processing between AI, linguistics and cognitive science . Frontiers in Artificial Intelligence , 5 , 1059998 . Search in Google Scholar

Anikushina, V., Taratukhin, V., & von Stutterheim, C. (2018). Natural language oral communication in humans under stress. Linguistic cognitive coping strategies for enrichment of artificial intelligence. Procedia computer science, 123, 24-28. Anikushina V. Taratukhin V. von Stutterheim C. ( 2018 ). Natural language oral communication in humans under stress . Linguistic cognitive coping strategies for enrichment of artificial intelligence. Procedia computer science , 123 , 24 - 28 . Search in Google Scholar

Kumar, A., Srinivasan, K., Cheng, W. H., & Zomaya, A. Y. (2020). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Information Processing & Management, 57(1), 102141. Kumar A. Srinivasan K. Cheng W. H. Zomaya A. Y. ( 2020 ). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data . Information Processing & Management , 57 ( 1 ), 102141 . Search in Google Scholar

Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3), 483. Dang N. C. Moreno-García M. N. De la Prieta F. ( 2020 ). Sentiment analysis based on deep learning: A comparative study . Electronics , 9 ( 3 ), 483 . Search in Google Scholar

Xu, N., & Mao, W. (2017, November). Multisentinet: A deep semantic network for multimodal sentiment analysis. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 2399-2402). Xu N. Mao W. ( 2017 , November ). Multisentinet: A deep semantic network for multimodal sentiment analysis . In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 2399 - 2402 ). Search in Google Scholar

Ayesha, H., Iqbal, S., Tariq, M., Abrar, M., Sanaullah, M., Abbas, I., & Hussain, S. (2021). Automatic medical image interpretation: State of the art and future directions. Pattern Recognition, 114, 107856. Ayesha H. Iqbal S. Tariq M. Abrar M. Sanaullah M. Abbas I. Hussain S. ( 2021 ). Automatic medical image interpretation: State of the art and future directions . Pattern Recognition , 114 , 107856 . Search in Google Scholar

Rajpurkar, P., & Lungren, M. P. (2023). The current and future state of AI interpretation of medical images. New England Journal of Medicine, 388(21), 1981-1990. Rajpurkar P. Lungren M. P. ( 2023 ). The current and future state of AI interpretation of medical images . New England Journal of Medicine , 388 ( 21 ), 1981 - 1990 . Search in Google Scholar

Thompson, C. E. (2022). Beyond imperturbability: the nineteenth-century medical casebook as affective genre. Bulletin of the History of Medicine, 96(2), 182-210. Thompson C. E. ( 2022 ). Beyond imperturbability: the nineteenth-century medical casebook as affective genre . Bulletin of the History of Medicine , 96 ( 2 ), 182 - 210 . Search in Google Scholar

Bucci, F. (2024). Emotional Textual Analysis, the circumstantial method and the history of cultures. Quaderni di Psicologia Clinica, 12(1). Bucci F. ( 2024 ). Emotional Textual Analysis, the circumstantial method and the history of cultures . Quaderni di Psicologia Clinica , 12 ( 1 ). Search in Google Scholar

Elyoseph, Z., Refoua, E., Asraf, K., Lvovsky, M., Shimoni, Y., & Hadar-Shoval, D. (2024). Capacity of generative AI to interpret human emotions from visual and textual data: pilot evaluation study. JMIR Mental Health, 11, e54369. Elyoseph Z. Refoua E. Asraf K. Lvovsky M. Shimoni Y. Hadar-Shoval D. ( 2024 ). Capacity of generative AI to interpret human emotions from visual and textual data: pilot evaluation study . JMIR Mental Health , 11 , e54369 . Search in Google Scholar

Zad, S., Heidari, M., James Jr, H., & Uzuner, O. (2021, May). Emotion detection of textual data: An interdisciplinary survey. In 2021 IEEE World AI IoT Congress (AIIoT) (pp. 0255-0261). IEEE. Zad S. Heidari M. James Jr, H. Uzuner O. ( 2021 , May ). Emotion detection of textual data: An interdisciplinary survey . In 2021 IEEE World AI IoT Congress (AIIoT) (pp. 0255 - 0261 ). IEEE. Search in Google Scholar

Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335-4385. Yadav A. Vishwakarma D. K. ( 2020 ). Sentiment analysis using deep learning architectures: a review . Artificial Intelligence Review , 53 ( 6 ), 4335 - 4385 . Search in Google Scholar

Sahoo, C., Wankhade, M., & Singh, B. K. (2023). Sentiment analysis using deep learning techniques: a comprehensive review. International Journal of Multimedia Information Retrieval, 12(2), 41. Sahoo C. Wankhade M. Singh B. K. ( 2023 ). Sentiment analysis using deep learning techniques: a comprehensive review . International Journal of Multimedia Information Retrieval , 12 ( 2 ), 41 . Search in Google Scholar

Zucco, C., Liang, H., Di Fatta, G., & Cannataro, M. (2018, December). Explainable sentiment analysis with applications in medicine. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1740-1747). IEEE. Zucco C. Liang H. Di Fatta G. Cannataro M. ( 2018 , December ). Explainable sentiment analysis with applications in medicine . In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1740 - 1747 ). IEEE . Search in Google Scholar

Jing Zhou, Zhanliang Ye, Sheng Zhang, Zhao Geng, Ning Han & Tao Yang. (2024). Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Heliyon(16),e35945-e35945. Jing Zhou Zhanliang Ye Sheng Zhang Zhao Geng Ning Han Tao Yang ( 2024 ). Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data . Heliyon(16) , e35945 - e35945 . Search in Google Scholar

Riswanda Ayu Dhiya’ulhaq, Anisya Safira, Indah Fahmiyah & Mohammad Ghani. (2024). Ocean wave prediction using Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) in Tuban Regency for fisherman safety. MethodsX103031-103031. Riswanda Ayu Dhiya’ulhaq Anisya Safira Indah Fahmiyah Mohammad Ghani ( 2024 ). Ocean wave prediction using Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) in Tuban Regency for fisherman safety . MethodsX 103031 - 103031 . Search in Google Scholar

Safwan Mahmood Al Selwi, Mohd Fadzil Hassan, Said Jadid Abdulkadir, Mohammed Gamal Ragab, Alawi Alqushaibi & Ebrahim Hamid Sumiea. (2024). Smart grid stability prediction using Adaptive Aquila Optimizer and ensemble stacked BiLSTM. Results in Engineering103261-103261. Safwan Mahmood Al Selwi Mohd Fadzil Hassan Said Jadid Abdulkadir Mohammed Gamal Ragab Alawi Alqushaibi Ebrahim Hamid Sumiea ( 2024 ). Smart grid stability prediction using Adaptive Aquila Optimizer and ensemble stacked BiLSTM . Results in Engineering 103261 - 103261 . Search in Google Scholar

Huixin Tian, Qian Zhang & Chao Xi. (2024). Operational vehicle state of health estimation framework based on local-global attention mechanism. Journal of Energy Storage(PA),114487-114487. Huixin Tian Qian Zhang Chao Xi ( 2024 ). Operational vehicle state of health estimation framework based on local-global attention mechanism . Journal of Energy Storage(PA) , 114487 - 114487 . Search in Google Scholar

Xinyu Li, Qiaohong Liu, Xuewei Li, Tiansheng Huang, Min Lin, Xiaoxiang Han & Yuanjie Lin. (2024). CIFTC-Net: Cross information fusion network with transformer and CNN for polyp segmentation. Displays102872-102872. Xinyu Li Qiaohong Liu Xuewei Li Tiansheng Huang Min Lin Xiaoxiang Han Yuanjie Lin ( 2024 ). CIFTC-Net: Cross information fusion network with transformer and CNN for polyp segmentation . Displays 102872 - 102872 . Search in Google Scholar

Language:
English