This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Yang, Y., Zhuang, Y., & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558.YangY.ZhuangY.PanY. (2021). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558.Search in Google Scholar
Wang, H. (2021). Multi-sensor fusion module for perceptual target recognition for intelligent machine learning visual feature extraction. IEEE Sensors Journal, 21(22), 24993-25000.WangH. (2021). Multi-sensor fusion module for perceptual target recognition for intelligent machine learning visual feature extraction. IEEE Sensors Journal, 21(22), 24993-25000.Search in Google Scholar
Wang, Y., Widrow, B. C., Zadeh, L. A., Howard, N., Wood, S., Bhavsar, V. C., & Shell, D. F. (2020). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 1500-1523). IGI Global.WangY.WidrowB. C.ZadehL. A.HowardN.WoodS.BhavsarV. C.ShellD. F. (2020). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 1500-1523). IGI Global.Search in Google Scholar
Bringsjord, S., Govindarajulu, N. S., & Oswald, J. (2023). Universal Cognitive Intelligence, from Cognitive Consciousness, and Lambda (Λ). In Computational Approaches to Conscious Artificial Intelligence (pp. 127-167).BringsjordS.GovindarajuluN. S.OswaldJ. (2023). Universal Cognitive Intelligence, from Cognitive Consciousness, and Lambda (Λ). In Computational Approaches to Conscious Artificial Intelligence (pp. 127-167). Search in Google Scholar
Lenci, A., & Padó, S. (2022). Perspectives for natural language processing between AI, linguistics and cognitive science. Frontiers in Artificial Intelligence, 5, 1059998.LenciA.PadóS. (2022). Perspectives for natural language processing between AI, linguistics and cognitive science. Frontiers in Artificial Intelligence, 5, 1059998.Search in Google Scholar
Anikushina, V., Taratukhin, V., & von Stutterheim, C. (2018). Natural language oral communication in humans under stress. Linguistic cognitive coping strategies for enrichment of artificial intelligence. Procedia computer science, 123, 24-28.AnikushinaV.TaratukhinV.von StutterheimC. (2018). Natural language oral communication in humans under stress. Linguistic cognitive coping strategies for enrichment of artificial intelligence. Procedia computer science, 123, 24-28.Search in Google Scholar
Kumar, A., Srinivasan, K., Cheng, W. H., & Zomaya, A. Y. (2020). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Information Processing & Management, 57(1), 102141.KumarA.SrinivasanK.ChengW. H.ZomayaA. Y. (2020). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Information Processing & Management, 57(1), 102141.Search in Google Scholar
Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3), 483.DangN. C.Moreno-GarcíaM. N.De la PrietaF. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3), 483.Search in Google Scholar
Xu, N., & Mao, W. (2017, November). Multisentinet: A deep semantic network for multimodal sentiment analysis. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 2399-2402).XuN.MaoW. (2017, November). Multisentinet: A deep semantic network for multimodal sentiment analysis. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 2399-2402).Search in Google Scholar
Ayesha, H., Iqbal, S., Tariq, M., Abrar, M., Sanaullah, M., Abbas, I., & Hussain, S. (2021). Automatic medical image interpretation: State of the art and future directions. Pattern Recognition, 114, 107856.AyeshaH.IqbalS.TariqM.AbrarM.SanaullahM.AbbasI.HussainS. (2021). Automatic medical image interpretation: State of the art and future directions. Pattern Recognition, 114, 107856.Search in Google Scholar
Rajpurkar, P., & Lungren, M. P. (2023). The current and future state of AI interpretation of medical images. New England Journal of Medicine, 388(21), 1981-1990.RajpurkarP.LungrenM. P. (2023). The current and future state of AI interpretation of medical images. New England Journal of Medicine, 388(21), 1981-1990.Search in Google Scholar
Thompson, C. E. (2022). Beyond imperturbability: the nineteenth-century medical casebook as affective genre. Bulletin of the History of Medicine, 96(2), 182-210.ThompsonC. E. (2022). Beyond imperturbability: the nineteenth-century medical casebook as affective genre. Bulletin of the History of Medicine, 96(2), 182-210.Search in Google Scholar
Bucci, F. (2024). Emotional Textual Analysis, the circumstantial method and the history of cultures. Quaderni di Psicologia Clinica, 12(1).BucciF. (2024). Emotional Textual Analysis, the circumstantial method and the history of cultures. Quaderni di Psicologia Clinica, 12(1).Search in Google Scholar
Elyoseph, Z., Refoua, E., Asraf, K., Lvovsky, M., Shimoni, Y., & Hadar-Shoval, D. (2024). Capacity of generative AI to interpret human emotions from visual and textual data: pilot evaluation study. JMIR Mental Health, 11, e54369.ElyosephZ.RefouaE.AsrafK.LvovskyM.ShimoniY.Hadar-ShovalD. (2024). Capacity of generative AI to interpret human emotions from visual and textual data: pilot evaluation study. JMIR Mental Health, 11, e54369.Search in Google Scholar
Zad, S., Heidari, M., James Jr, H., & Uzuner, O. (2021, May). Emotion detection of textual data: An interdisciplinary survey. In 2021 IEEE World AI IoT Congress (AIIoT) (pp. 0255-0261). IEEE.ZadS.HeidariM.JamesJr, H.UzunerO. (2021, May). Emotion detection of textual data: An interdisciplinary survey. In 2021 IEEE World AI IoT Congress (AIIoT) (pp. 0255-0261). IEEE.Search in Google Scholar
Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335-4385.YadavA.VishwakarmaD. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335-4385.Search in Google Scholar
Sahoo, C., Wankhade, M., & Singh, B. K. (2023). Sentiment analysis using deep learning techniques: a comprehensive review. International Journal of Multimedia Information Retrieval, 12(2), 41.SahooC.WankhadeM.SinghB. K. (2023). Sentiment analysis using deep learning techniques: a comprehensive review. International Journal of Multimedia Information Retrieval, 12(2), 41.Search in Google Scholar
Zucco, C., Liang, H., Di Fatta, G., & Cannataro, M. (2018, December). Explainable sentiment analysis with applications in medicine. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1740-1747). IEEE.ZuccoC.LiangH.Di FattaG.CannataroM. (2018, December). Explainable sentiment analysis with applications in medicine. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1740-1747). IEEE.Search in Google Scholar
Jing Zhou, Zhanliang Ye, Sheng Zhang, Zhao Geng, Ning Han & Tao Yang. (2024). Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Heliyon(16),e35945-e35945.JingZhouZhanliangYeShengZhangZhaoGengNingHanTaoYang (2024). Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Heliyon(16),e35945-e35945.Search in Google Scholar
Riswanda Ayu Dhiya’ulhaq, Anisya Safira, Indah Fahmiyah & Mohammad Ghani. (2024). Ocean wave prediction using Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) in Tuban Regency for fisherman safety. MethodsX103031-103031.Riswanda AyuDhiya’ulhaqAnisyaSafiraIndahFahmiyahMohammadGhani (2024). Ocean wave prediction using Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) in Tuban Regency for fisherman safety. MethodsX103031-103031.Search in Google Scholar
Safwan Mahmood Al Selwi, Mohd Fadzil Hassan, Said Jadid Abdulkadir, Mohammed Gamal Ragab, Alawi Alqushaibi & Ebrahim Hamid Sumiea. (2024). Smart grid stability prediction using Adaptive Aquila Optimizer and ensemble stacked BiLSTM. Results in Engineering103261-103261.Safwan MahmoodAl SelwiMohd FadzilHassanSaid JadidAbdulkadirMohammed GamalRagabAlawiAlqushaibiEbrahim HamidSumiea (2024). Smart grid stability prediction using Adaptive Aquila Optimizer and ensemble stacked BiLSTM. Results in Engineering103261-103261.Search in Google Scholar
Huixin Tian, Qian Zhang & Chao Xi. (2024). Operational vehicle state of health estimation framework based on local-global attention mechanism. Journal of Energy Storage(PA),114487-114487.HuixinTianQianZhangChaoXi (2024). Operational vehicle state of health estimation framework based on local-global attention mechanism. Journal of Energy Storage(PA),114487-114487.Search in Google Scholar
Xinyu Li, Qiaohong Liu, Xuewei Li, Tiansheng Huang, Min Lin, Xiaoxiang Han & Yuanjie Lin. (2024). CIFTC-Net: Cross information fusion network with transformer and CNN for polyp segmentation. Displays102872-102872.XinyuLiQiaohongLiuXueweiLiTianshengHuangMinLinXiaoxiangHan‥YuanjieLin (2024). CIFTC-Net: Cross information fusion network with transformer and CNN for polyp segmentation. Displays102872-102872.Search in Google Scholar