Research on English Learning Content Rendering and Interactive Application Based on Multimedia Technology
Feb 27, 2025
About this article
Published Online: Feb 27, 2025
Received: Oct 20, 2024
Accepted: Jan 21, 2025
DOI: https://doi.org/10.2478/amns-2025-0138
Keywords
© 2025 Xiaokai Duan, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Comparison of LeNet-5 and WN-LeNet-5 Neural Network Accuracy
Algorithm | Privacy Level( |
||||
---|---|---|---|---|---|
7 | 3 | 1 | 0.5 | 0.1 | |
DPSGD | 93.12% | 92.65% | 91.15% | 90.05% | 83.10 |
WN-DPSGD | 94.63% | 93.06% | 92.77% | 91.63% | 88.68 |
Privacy loss boundary value of different combination mechanisms
Method | Privacy budget boundary value |
---|---|
Common combination mechanism | ( |
Strong combination mechanism | |
Moment accountant mechanism |
Comparison of parameters between ResNet-WN-18 and 5ResNet-18
Layer name | ResNet-18 | Res Net-WN-18 |
---|---|---|
Convolution | 1728 | 1728 |
Normalization layer | 128 | 0 |
Layer 1 | 147968 | 147456 |
Layer 2 | 517120 | 516096 |
Layer 3 | 2066432 | 2064384 |
Layer 4 | 8261632 | 8257536 |
Linear | 5130 | 5130 |
Total | 11000138 | 10992330 |
Comparison of neural network accuracy with different weight noise levels
Model | Weighted noise level | ||||
---|---|---|---|---|---|
0 | 0.001 | 0.1 | 1 | 2 | |
LeNet-5 | 99.20% | 98.72% | 98.01% | Nonconvergence | Nonconvergence |
BN-LeNet-5 | 99.20% | 99.17% | 99.17% | 99.14% | 99.08% |
WN-LeNet-5 | 99.16% | 99.15% | 99.15% | 99.12% | 99.07% |
R Default Parameters
Parameter | Default |
---|---|
0.9 | |
0.01 | |
10–6 | |
5000 | |
∈ | 0.1 |
Q | 100 |
R | 10 |
L | 288 |
Experimental Simulation Environment
Name | Version model |
---|---|
GPU | GeForce GTX 1650 (8GB) |
GPU | Intel Core i7 |
Python | 3.8.5 |
Pytorch | 1.71 (GPU version) |
Effect of hyperbolic discount factor on average relative error
∈= 0.01 | ∈= 0.03 | ∈= 0.05 | ∈= 0.07 | ∈= 0.09 | |
---|---|---|---|---|---|
0.01 | 9.5906 | 3.1894 | 3.1364 | 1.6202 | 1.3371 |
0.1 | 4.0158 | 2.2728 | 1.2470 | 1.0315 | 0.8132 |
1 | 2.9822 | 1.3099 | 0.8551 | 0.5707 | 0.3469 |
10 | 0.9605 | 0.2263 | 0.2120 | 0.2106 | 0.1672 |
100 | 0.2730 | 0.1590 | 0.1488 | 0.1346 | 0.1347 |
Floating point Calculation Times Statistics of Batch Normalization Operation
Batch normalization operation | Floating point number of operations |
---|---|
Comparison of algorithm privacy loss
Data set | Accuracy | Loss of privacy |
Loss of privacy |
Loss of privacy |
|
---|---|---|---|---|---|
MNIST | 88.00% | 10–5 | 0.71 | 0.615 | 0.56 |
90.00% | 1.28 | 1.09 | 0.921 | ||
92.00% | 1.78 | 1.32 | 1.23 | ||
94.00% | 5.73 | 3.68 | 2.98 |