Open Access

Deep Learning Models in Network Intrusion Detection Systems

  
Feb 05, 2025

Cite
Download Cover

Figure 1.

Network intrusion detection process
Network intrusion detection process

Figure 2.

Network intrusion detection system
Network intrusion detection system

Figure 3.

Bot-IoT prediction confusion matrix
Bot-IoT prediction confusion matrix

Figure 4.

Ton-IoT prediction confusion matrix
Ton-IoT prediction confusion matrix

Figure 5.

System click pressure diagram
System click pressure diagram

Bot-IoT multiple evaluation index

Categories Precision ratio Recall rate F1-score Total accuracy
Normal 99.00% 99.81% 99.81% 99.02%
DDoS 99.20% 99.43% 99.97%
DoS 99.02% 99.71% 99.13%
Reconnaissance 99.99% 99.29% 99.88%
Theft 96.77% 95.19% 95.52%

Network intrusion detection results

Known type
Attack name Recognition rate False rate Leakage rate
OOB 94.41% 3.25% 2.34%
Land 97.92% 2.07% 0.01%
Ping of death 96.11% 3.71% 0.18%
Smurf 96.20% 1.93% 1.87%
CGI 95.04% 3.70% 1.26%
Finger Print 96.96% 1.02% 2.02%
Unknown type
Attack name Alarm rate Leakage rate
BACKDOOR 91.39% 8.61%
DOS 90.00% 10.00%
FTP 89.34% 10.66%

Typical network attack sample library

Sample number 1 2 3 4 5 ……
Feature 1 Tcp Tcp icmp udp icmp ……
Feature 2 35 29 28 54 26 ……
Feature 3 1 21 35 0 49 ……
Feature 4 2164 529 null 126 null ……
Feature 5 92 1264 null 152 null ……
Feature 6 null null 9 null 6 ……
Feature 7 null null 0 null 5 ……
Feature 8 A F null null null ……
Feature 9 419 52 76 164 72 ……
Feature 10 Get-cgi $ i/n 1a 3c 3f ……
Categories 0 2 1 3 1 ……

The number of TON-IoT data set categories

Numbering Categories Sample number
0 Bengin 1126548
1 Scanning 718192
2 Xss 703991
3 DDoS 504635
4 Password 470633
5 DoS 411088
6 Injection 370432
7 Backdoor 4526
8 Mitm 1897
9 Ransomware 692

The number of Bot-IoT data set categories

Numbering Categories Sample number
0 Normal 516
1 DDoS 1847593
2 DoS 1956425
3 Reconnaissance 89452
4 Theft 95

Comparison of the IoT multiple subclass results

Model Precision ratio Recall rate F1-score Accuracy rate
ViT 83.30% 79.59% 85.92% 87.19%
MobileNetV2 81.35% 77.03% 80.71% 92.55%
Xception 79.30% 81.28% 79.85% 95.39%
EfficientNetB0 80.89% 80.64% 81.09% 89.02%
DenseNet121 84.93% 81.88% 80.60% 87.52%
This article 97.85% 95.62% 89.64% 99.06%

Comparison of the results of Bot-IoT multiple categories

Model Precision ratio Recall rate F1-score Accuracy rate
Xception 85.24% 81.66% 86.63% 95.84%
EfficientNetB0 88.00% 86.68% 89.51% 96.40%
DenseNet121 94.23% 95.24% 93.65% 96.88%
FNN 90.29% 91.20% 92.61% 96.57%
TSODE 99.38% 97.33% 95.44% 97.28%
This article 98.80% 98.69% 98.86% 99.02%
Language:
English