This work is licensed under the Creative Commons Attribution 4.0 International License.
Hu, H., & Shi, Z. (2012). The Possibility of Using Simple Neuron Models to Design Brain-Like Computers. In Advances in Brain Inspired Cognitive Systems: 5th International Conference, BICS 2012, Shenyang, China, July 11-14, 2012. Proceedings 5 (pp. 361-372). Springer Berlin Heidelberg.HuH.ShiZ. (2012). The Possibility of Using Simple Neuron Models to Design Brain-Like Computers. In Advances in Brain Inspired Cognitive Systems: 5th International Conference, BICS 2012, Shenyang, China, July 11-14, 2012. Proceedings 5 (pp. 361-372). Springer Berlin Heidelberg.Search in Google Scholar
Gholipour, B., Bastock, P., Craig, C., Khan, K., Hewak, D., & Soci, C. (2015). Amorphous metal‐sulphide microfibers enable photonic synapses for brain‐like computing. Advanced Optical Materials, 3(5), 635-641.GholipourB.BastockP.CraigC.KhanK.HewakD.SociC. (2015). Amorphous metal‐sulphide microfibers enable photonic synapses for brain‐like computing. Advanced Optical Materials, 3(5), 635-641.Search in Google Scholar
Shi, D., Mi, H., & Kralik, J. (2021, April). A Brain-Like Computational Model Based on a Shared Memory. In 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (pp. 596-599). IEEE.ShiD.MiH.KralikJ. (2021, April). A Brain-Like Computational Model Based on a Shared Memory. In 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (pp. 596-599). IEEE.Search in Google Scholar
Terasa, M. I., Birkoben, T., Noll, M., Adejube, B., Madurawala, R., Carstens, N., … & Adelung, R. (2023). Pathways towards truly brain-like computing primitives. Materials Today, 69, 41-53.TerasaM. I.BirkobenT.NollM.AdejubeB.MadurawalaR.CarstensN.AdelungR. (2023). Pathways towards truly brain-like computing primitives. Materials Today, 69, 41-53.Search in Google Scholar
Jiang, J., Guo, J., Wan, X., Yang, Y., Xie, H., Niu, D., … & Wan, Q. (2017). 2D MoS2 neuromorphic devices for brain‐like computational systems. Small, 13(29), 1700933.JiangJ.GuoJ.WanX.YangY.XieH.NiuD.WanQ. (2017). 2D MoS2 neuromorphic devices for brain‐like computational systems. Small, 13(29), 1700933.Search in Google Scholar
Shi, Z., Wang, X., Shi, Z., Chen, L., & Wang, Z. (2010, July). A mind model for brain-like computer. In 9th IEEE International Conference on Cognitive Informatics (ICCI’10) (pp. 257-264). IEEE.ShiZ.WangX.ShiZ.ChenL.WangZ. (2010, July). A mind model for brain-like computer. In 9th IEEE International Conference on Cognitive Informatics (ICCI’10) (pp. 257-264). IEEE.Search in Google Scholar
Vu, T. L., & Turitsyn, K. (2016). A framework for robust assessment of power grid stability and resiliency. IEEE Transactions on Automatic Control, 62(3), 1165-1177.VuT. L.TuritsynK. (2016). A framework for robust assessment of power grid stability and resiliency. IEEE Transactions on Automatic Control, 62(3), 1165-1177.Search in Google Scholar
Liu, T., Song, Y., Zhu, L., & Hill, D. J. (2022). Stability and control of power grids. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), 689-716.LiuT.SongY.ZhuL.HillD. J. (2022). Stability and control of power grids. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), 689-716.Search in Google Scholar
Smith, O., Cattell, O., Farcot, E., O’Dea, R. D., & Hopcraft, K. I. (2022). The effect of renewable energy incorporation on power grid stability and resilience. Science advances, 8(9), eabj6734.SmithO.CattellO.FarcotE.O’DeaR. D.HopcraftK. I. (2022). The effect of renewable energy incorporation on power grid stability and resilience. Science advances, 8(9), eabj6734.Search in Google Scholar
Refaat, S. S., Abu‐Rub, H., Sanfilippo, A. P., & Mohamed, A. (2018). Impact of grid‐tied large‐scale photovoltaic system on dynamic voltage stability of electric power grids. IET Renewable Power Generation, 12(2), 157-164.RefaatS. S.Abu‐RubH.SanfilippoA. P.MohamedA. (2018). Impact of grid‐tied large‐scale photovoltaic system on dynamic voltage stability of electric power grids. IET Renewable Power Generation, 12(2), 157-164.Search in Google Scholar
Mehrasa, M., Pouresmaeil, E., Jørgensen, B. N., & Catalão, J. P. (2015). A control plan for the stable operation of microgrids during grid-connected and islanded modes. Electric Power Systems Research, 129, 10-22.MehrasaM.PouresmaeilE.JørgensenB. N.CatalãoJ. P. (2015). A control plan for the stable operation of microgrids during grid-connected and islanded modes. Electric Power Systems Research, 129, 10-22.Search in Google Scholar
Guo, T., & Milanović, J. V. (2015). Online identification of power system dynamic signature using PMU measurements and data mining. IEEE Transactions on Power Systems, 31(3), 1760-1768.GuoT.MilanovićJ. V. (2015). Online identification of power system dynamic signature using PMU measurements and data mining. IEEE Transactions on Power Systems, 31(3), 1760-1768.Search in Google Scholar
Kao, C. (2013). Dynamic data envelopment analysis: A relational analysis. European Journal of Operational Research, 227(2), 325-330.KaoC. (2013). Dynamic data envelopment analysis: A relational analysis. European Journal of Operational Research, 227(2), 325-330.Search in Google Scholar
Diamantoulakis, P. D., Kapinas, V. M., & Karagiannidis, G. K. (2015). Big data analytics for dynamic energy management in smart grids. Big Data Research, 2(3), 94-101.DiamantoulakisP. D.KapinasV. M.KaragiannidisG. K. (2015). Big data analytics for dynamic energy management in smart grids. Big Data Research, 2(3), 94-101.Search in Google Scholar
Mariz, F. B., Almeida, M. R., & Aloise, D. (2018). A review of dynamic data envelopment analysis: state of the art and applications. International Transactions in Operational Research, 25(2), 469-505.MarizF. B.AlmeidaM. R.AloiseD. (2018). A review of dynamic data envelopment analysis: state of the art and applications. International Transactions in Operational Research, 25(2), 469-505.Search in Google Scholar
Zhao, J., Netto, M., Huang, Z., Yu, S. S., Gómez-Expósito, A., Wang, S., … & Rouhani, A. (2020). Roles of dynamic state estimation in power system modeling, monitoring and operation. IEEE Transactions on Power Systems, 36(3), 2462-2472.ZhaoJ.NettoM.HuangZ.YuS. S.Gómez-ExpósitoA.WangS.RouhaniA. (2020). Roles of dynamic state estimation in power system modeling, monitoring and operation. IEEE Transactions on Power Systems, 36(3), 2462-2472.Search in Google Scholar
Fan, L., Miao, Z., Shah, S., Koralewicz, P., Gevorgian, V., & Fu, J. (2022). Data-driven dynamic modeling in power systems: A fresh look on inverter-based resource modeling. IEEE Power and Energy Magazine, 20(3), 64-76.FanL.MiaoZ.ShahS.KoralewiczP.GevorgianV.FuJ. (2022). Data-driven dynamic modeling in power systems: A fresh look on inverter-based resource modeling. IEEE Power and Energy Magazine, 20(3), 64-76.Search in Google Scholar
Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798.KootM.WijnhovenF. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798.Search in Google Scholar
Li, H., Ju, P., Gan, C., You, S., Wu, F., & Liu, Y. (2018). Analytic analysis for dynamic system frequency in power systems under uncertain variability. IEEE Transactions on Power Systems, 34(2), 982-993.LiH.JuP.GanC.YouS.WuF.LiuY. (2018). Analytic analysis for dynamic system frequency in power systems under uncertain variability. IEEE Transactions on Power Systems, 34(2), 982-993.Search in Google Scholar
Zhenlin Huang,Xing Wen,Jinwei Zhu & Ziyan Feng. (2024). Research on fault location of DC line in UHV converter station based on digital twin technology. Measurement: Sensors101180-.ZhenlinHuangXingWenJinweiZhuZiyanFeng (2024). Research on fault location of DC line in UHV converter station based on digital twin technology. Measurement: Sensors101180-.Search in Google Scholar
Huang Chenyang,Zhang Enhu,Guo Kai,Yang Yiyong,Zhang Chong & Wei Jianfeng. (2022). Potential application of Six Sigma method in operation and maintenance management of UHVDC converter station. International Journal of Emerging Electric Power Systems(2),151-162.HuangChenyangZhangEnhuGuoKaiYangYiyongZhangChongWeiJianfeng (2022). Potential application of Six Sigma method in operation and maintenance management of UHVDC converter station. International Journal of Emerging Electric Power Systems(2),151-162.Search in Google Scholar
Yılmaz Aslan & Yunus Emre Yağan. (2017). Artificial neural-network-based fault location for power distribution lines using the frequency spectra of fault data. Electrical Engineering(1),301-311.YılmazAslanYunus EmreYağan (2017). Artificial neural-network-based fault location for power distribution lines using the frequency spectra of fault data. Electrical Engineering(1301-311.Search in Google Scholar