This work is licensed under the Creative Commons Attribution 4.0 International License.
Pang, Y., Li, X., Wei, S., Li, Q., & Xiao, Y. (2023). Topic to image: A rumor detection method inspired by image forgery recognition technology. IEEE Transactions on Computational Social Systems.PangY.LiX.WeiS.LiQ.XiaoY. (2023). Topic to image: A rumor detection method inspired by image forgery recognition technology. IEEE Transactions on Computational Social Systems.Search in Google Scholar
Saber, A. H., Khan, M. A., & Mejbel, B. G. (2020). A survey on image forgery detection using different forensic approaches. Advances in Science, Technology and Engineering Systems Journal, 5(3), 361-370.SaberA. H.KhanM. A.MejbelB. G. (2020). A survey on image forgery detection using different forensic approaches. Advances in Science, Technology and Engineering Systems Journal, 5(3), 361-370.Search in Google Scholar
Zanardelli, M., Guerrini, F., Leonardi, R., & Adami, N. (2023). Image forgery detection: a survey of recent deep-learning approaches. Multimedia Tools and Applications, 82(12), 17521-17566.ZanardelliM.GuerriniF.LeonardiR.AdamiN. (2023). Image forgery detection: a survey of recent deep-learning approaches. Multimedia Tools and Applications, 82(12), 17521-17566.Search in Google Scholar
Elaskily, M. A., Elnemr, H. A., Dessouky, M. M., & Faragallah, O. S. (2019). Two stages object recognition based copy-move forgery detection algorithm. Multimedia Tools and Applications, 78, 15353-15373.ElaskilyM. A.ElnemrH. A.DessoukyM. M.FaragallahO. S. (2019). Two stages object recognition based copy-move forgery detection algorithm. Multimedia Tools and Applications, 78, 15353-15373.Search in Google Scholar
Sudiatmika, I. B. K., Rahman, F., Trisno, T., & Suyoto, S. (2019). Image forgery detection using error level analysis and deep learning. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(2), 653-659.SudiatmikaI. B. K.RahmanF.TrisnoT.SuyotoS. (2019). Image forgery detection using error level analysis and deep learning. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(2), 653-659.Search in Google Scholar
Mehrjardi, F. Z., Latif, A. M., Zarchi, M. S., & Sheikhpour, R. (2023). A survey on deep learning-based image forgery detection. Pattern Recognition, 109778.MehrjardiF. Z.LatifA. M.ZarchiM. S.SheikhpourR. (2023). A survey on deep learning-based image forgery detection. Pattern Recognition, 109778.Search in Google Scholar
Marra, F., Gragnaniello, D., Verdoliva, L., & Poggi, G. (2020). A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection. IEEE Access, 8, 133488-133502.MarraF.GragnanielloD.VerdolivaL.PoggiG. (2020). A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection. IEEE Access, 8, 133488-133502.Search in Google Scholar
Poddar, J., Parikh, V., & Bharti, S. K. (2020). Offline signature recognition and forgery detection using deep learning. Procedia Computer Science, 170, 610-617.PoddarJ.ParikhV.BhartiS. K. (2020). Offline signature recognition and forgery detection using deep learning. Procedia Computer Science, 170, 610-617.Search in Google Scholar
Cozzolino, D., Poggi, G., & Verdoliva, L. (2017, June). Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In Proceedings of the 5th ACM workshop on information hiding and multimedia security (pp. 159-164).CozzolinoD.PoggiG.VerdolivaL. (2017, June). Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In Proceedings of the 5th ACM workshop on information hiding and multimedia security (pp. 159-164).Search in Google Scholar
Kaur, G., Singh, N., & Kumar, M. (2023). Image forgery techniques: a review. Artificial Intelligence Review, 56(2), 1577-1625.KaurG.SinghN.KumarM. (2023). Image forgery techniques: a review. Artificial Intelligence Review, 56(2), 1577-1625.Search in Google Scholar
Su, G. D., Chang, C. C., & Chen, C. C. (2021). A hybrid-Sudoku based fragile watermarking scheme for image tampering detection. Multimedia Tools and Applications, 80, 12881-12903.SuG. D.ChangC. C.ChenC. C. (2021). A hybrid-Sudoku based fragile watermarking scheme for image tampering detection. Multimedia Tools and Applications, 80, 12881-12903.Search in Google Scholar
Singh, P., Raman, B., Agarwal, N., & Atrey, P. K. (2017). Secure cloud-based image tampering detection and localization using POB number system. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 13(3), 1-23.SinghP.RamanB.AgarwalN.AtreyP. K. (2017). Secure cloud-based image tampering detection and localization using POB number system. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 13(3), 1-23.Search in Google Scholar
Goléa, N. E. H., & Melkemi, K. E. (2019). ROI-based fragile watermarking for medical image tamper detection. International Journal of High Performance Computing and Networking, 13(2), 199-210.GoléaN. E. H.MelkemiK. E. (2019). ROI-based fragile watermarking for medical image tamper detection. International Journal of High Performance Computing and Networking, 13(2), 199-210.Search in Google Scholar
Soualmi, A., Alti, A., & Laouamer, L. (2022). An imperceptible watermarking scheme for medical image tamper detection. International Journal of Information Security and Privacy (IJISP), 16(1), 1-18.SoualmiA.AltiA.LaouamerL. (2022). An imperceptible watermarking scheme for medical image tamper detection. International Journal of Information Security and Privacy (IJISP), 16(1), 1-18.Search in Google Scholar
Wang, J., Wu, Z., Chen, J., Han, X., Shrivastava, A., Lim, S. N., & Jiang, Y. G. (2022). Objectformer for image manipulation detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2364-2373).WangJ.WuZ.ChenJ.HanX.ShrivastavaA.LimS. N.JiangY. G. (2022). Objectformer for image manipulation detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2364-2373).Search in Google Scholar
Kosuru, S. D., Swain, G., Kumar, N., & Pradhan, A. (2022). Image tamper detection and correction using Merkle tree and remainder value differencing. Optik, 261, 169212.KosuruS. D.SwainG.KumarN.PradhanA. (2022). Image tamper detection and correction using Merkle tree and remainder value differencing. Optik, 261, 169212.Search in Google Scholar
Rhayma, H., Makhloufi, A., Hamam, H., & Hamida, A. B. (2021). Semi-fragile watermarking scheme based on perceptual hash function (PHF) for image tampering detection. Multimedia Tools and Applications, 80(17), 26813-26832.RhaymaH.MakhloufiA.HamamH.HamidaA. B. (2021). Semi-fragile watermarking scheme based on perceptual hash function (PHF) for image tampering detection. Multimedia Tools and Applications, 80(17), 26813-26832.Search in Google Scholar
Sahu, A. K., Hassaballah, M., Rao, R. S., & Suresh, G. (2023). Logistic-map based fragile image watermarking scheme for tamper detection and localization. Multimedia Tools and Applications, 82(16), 24069-24100.SahuA. K.HassaballahM.RaoR. S.SureshG. (2023). Logistic-map based fragile image watermarking scheme for tamper detection and localization. Multimedia Tools and Applications, 82(16), 24069-24100.Search in Google Scholar
Nirmal Jothi, J., & Letitia, S. (2020). Tampering detection using hybrid local and global features in wavelet-transformed space with digital images. Soft Computing, 24(7), 5427-5443.Nirmal JothiJ.LetitiaS. (2020). Tampering detection using hybrid local and global features in wavelet-transformed space with digital images. Soft Computing, 24(7), 5427-5443.Search in Google Scholar
Yusoff, N., & Alamro, L. (2019). Implementation of feature extraction algorithms for image tampering detection. International Journal of Advanced Computer Research, 9(43), 197-211.YusoffN.AlamroL. (2019). Implementation of feature extraction algorithms for image tampering detection. International Journal of Advanced Computer Research, 9(43), 197-211.Search in Google Scholar
Barani, M. J., Valandar, M. Y., & Ayubi, P. (2019). A new digital image tamper detection algorithm based on integer wavelet transform and secured by encrypted authentication sequence with 3D quantum map. Optik, 187, 205-222.BaraniM. J.ValandarM. Y.AyubiP. (2019). A new digital image tamper detection algorithm based on integer wavelet transform and secured by encrypted authentication sequence with 3D quantum map. Optik, 187, 205-222.Search in Google Scholar
Sahu, A. K., Sahu, M., Patro, P., Sahu, G., & Nayak, S. R. (2023). Dual image-based reversible fragile watermarking scheme for tamper detection and localization. Pattern Analysis and Applications, 26(2), 571-590.SahuA. K.SahuM.PatroP.SahuG.NayakS. R. (2023). Dual image-based reversible fragile watermarking scheme for tamper detection and localization. Pattern Analysis and Applications, 26(2), 571-590.Search in Google Scholar
Haghighi, B. B., Taherinia, A. H., & Harati, A. (2018). TRLH: Fragile and blind dual watermarking for image tamper detection and self-recovery based on lifting wavelet transform and halftoning technique. Journal of Visual Communication and Image Representation, 50, 49-64.HaghighiB. B.TaheriniaA. H.HaratiA. (2018). TRLH: Fragile and blind dual watermarking for image tamper detection and self-recovery based on lifting wavelet transform and halftoning technique. Journal of Visual Communication and Image Representation, 50, 49-64.Search in Google Scholar
Alaa A. Abdullatif,Firas A. Abdullatif & Amna Al Safar. (2019). Multi -Focus Image Fusion Based on Stationary Wavelet Transform and PCA on YCBCR Color Space. Journal of Southwest Jiaotong University(5).Alaa A.AbdullatifFiras A.AbdullatifAmnaAl Safar (2019). Multi -Focus Image Fusion Based on Stationary Wavelet Transform and PCA on YCBCR Color Space. Journal of Southwest Jiaotong University(5).Search in Google Scholar
Wang Huanying,Yuan Zihan,Chen Siyu & Su Qingtang. (2023). Embedding color watermark image to color host image based on 2D-DCT.Optik.WangHuanyingYuanZihanChenSiyuSuQingtang (2023). Embedding color watermark image to color host image based on 2D-DCT.Optik.Search in Google Scholar
Shahrokhi Marziye,Akoushideh Alireza & Shahbahrami Asadollah. (2022). Image Copy–Move Forgery Detection Using Combination of Scale-Invariant Feature Transform and Local Binary Pattern Features. International Journal of Image and Graphics(05).ShahrokhiMarziyeAkoushidehAlirezaShahbahramiAsadollah (2022). Image Copy–Move Forgery Detection Using Combination of Scale-Invariant Feature Transform and Local Binary Pattern Features. International Journal of Image and Graphics(05).Search in Google Scholar
Amani Alahmadi,Muhammad Hussain,Hatim Aboalsamh,Ghulam Muhammad, George Bebis & Hassan Mathkour. (2017). Passive detection of image forgery using DCT and local binary pattern. Signal, Image and Video Processing(1),81-88.AmaniAlahmadiMuhammadHussainHatimAboalsamhGhulamMuhammadGeorgeBebisHassanMathkour (2017). Passive detection of image forgery using DCT and local binary pattern. Signal, Image and Video Processing(1),81-88.Search in Google Scholar
Diaz M. P. & Jiju Julie Emerald M.. (2022). A Hybrid Moth-Flame Optimization Technique for Feature Selection in Brain Image Classification and Image Denoising by Improved Log Gabor Filter. International Journal of Computer Vision and Image Processing (IJCVIP)(1),1-20.DiazM. P.Jiju Julie EmeraldM. (2022). A Hybrid Moth-Flame Optimization Technique for Feature Selection in Brain Image Classification and Image Denoising by Improved Log Gabor Filter. International Journal of Computer Vision and Image Processing (IJCVIP)(1),1-20.Search in Google Scholar