Open Access

A multifactorial detection model of young children’s physical abnormality based on image recognition technology under the concept of physical and health integration

 and   
Sep 03, 2024

Cite
Download Cover

Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021, July). High-performance large-scale image recognition without normalization. In International conference on machine learning (pp. 1059-1071). PMLR. Search in Google Scholar

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8697-8710). Search in Google Scholar

McCay, K. D., Ho, E. S., Shum, H. P., Fehringer, G., Marcroft, C., & Embleton, N. D. (2020). Abnormal infant movements classification with deep learning on pose-based features. IEEE Access, 8, 51582-51592. Search in Google Scholar

Hesse, N., Pujades, S., Romero, J., Black, M. J., Bodensteiner, C., Arens, M., ... & Sebastian Schroeder, A. (2018). Learning an infant body model from RGB-D data for accurate full body motion analysis. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I (pp. 792-800). Springer International Publishing. Search in Google Scholar

Hesse, N., Pujades, S., Black, M. J., Arens, M., Hofmann, U. G., & Schroeder, A. S. (2019). Learning and tracking the 3D body shape of freely moving infants from RGB-D sequences. IEEE transactions on pattern analysis and machine intelligence, 42(10), 2540-2551. Search in Google Scholar

Sakkos, D., Mccay, K. D., Marcroft, C., Embleton, N. D., Chattopadhyay, S., & Ho, E. S. (2021). Identification of abnormal movements in infants: A deep neural network for body part-based prediction of cerebral palsy. IEEE Access, 9, 94281-94292. Search in Google Scholar

Zhang, T., Jia, W., Yang, B., Yang, J., He, X., & Zheng, Z. (2017). MoWLD: a robust motion image descriptor for violence detection. Multimedia Tools and applications, 76, 1419-1438. Search in Google Scholar

Russel, N. S., & Selvaraj, A. (2021). Gender discrimination, age group classification and carried object recognition from gait energy image using fusion of parallel convolutional neural network. IET Image Processing, 15(1), 239-251. Search in Google Scholar

Qiang, J., Wu, D., Du, H., Zhu, H., Chen, S., & Pan, H. (2022). Review on facial-recognition-based applications in disease diagnosis. Bioengineering, 9(7), 273. Search in Google Scholar

Britto, P. R., Lye, S. J., Proulx, K., Yousafzai, A. K., Matthews, S. G., Vaivada, T., ... & Bhutta, Z. A. (2017). Nurturing care: promoting early childhood development. The lancet, 389(10064), 91-102. Search in Google Scholar

Utesch, T., Bardid, F., Büsch, D., & Strauss, B. (2019). The relationship between motor competence and physical fitness from early childhood to early adulthood: a meta-analysis. Sports medicine, 49, 541-551. Search in Google Scholar

Zhang, Z., Zhao, L., & Yang, T. (2021, August). Research on the application of artificial intelligence in image recognition technology. In Journal of Physics: Conference Series (Vol. 1992, No. 3, p. 032118). IOP Publishing. Search in Google Scholar

Carson, V., Lee, E. Y., Hewitt, L., Jennings, C., Hunter, S., Kuzik, N., ... & Tremblay, M. S. (2017). Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC public health, 17, 33-63. Search in Google Scholar

Daelmans, B., Darmstadt, G. L., Lombardi, J., Black, M. M., Britto, P. R., Lye, S., ... & Richter, L. M. (2017). Early childhood development: the foundation of sustainable development. The Lancet, 389(10064), 9-11. Search in Google Scholar

Dankiw, K. A., Tsiros, M. D., Baldock, K. L., & Kumar, S. (2020). The impacts of unstructured nature play on health in early childhood development: A systematic review. Plos one, 15(2), e0229006. Search in Google Scholar

World Health Organization. (2020). Improving early childhood development: WHO guideline. World Health Organization. Search in Google Scholar

Shunkang Ling,Nianyi Wang,Jingbin Li & Longpeng Ding.(2024).Accurate Recognition of Jujube Tree Trunks Based on Contrast Limited Adaptive Histogram Equalization Image Enhancement and Improved YOLOv8.Forests(4). Search in Google Scholar

Li Weiming & Jiang Xianyang.(2024).A novel evaluation standard combining gini-index and variation coefficient for double plateaus histogram equalization.Signal, Image and Video Processing(4),3321-3328. Search in Google Scholar

Ning Cao & Yupu Liu.(2024).High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold.Applied Sciences(2), Search in Google Scholar

Mingdong Zhou,Haojie Lian,Ole Sigmund & Niels Aage.(2018).Shape morphing and topology optimization of fluid channels by explicit boundary tracking.International Journal for Numerical Methods in Fluids(6),296-313. Search in Google Scholar

Language:
English