This work is licensed under the Creative Commons Attribution 4.0 International License.
Committee AISC. Specification for Structural Steel Buildings (ANSI/AISC 360-16). Chicago, Illinois: American Institute of Steel Construction; 2016.Search in Google Scholar
Chen Y, Ning J, Ren C, Yang Y. A strength degradation model of PBL shear connectors under fatigue load. Structures. 2023;48:1684-1692. http://doi.org/10.1016/j.istruc.2023.01.076.Search in Google Scholar
Lin S, Li Z, Zhao Y-G. Behavior of eccentrically loaded circular concrete-filled steel tube stub columns with localized corrosion. Eng Struct. 2023;288:116227. http://doi.org/10.1016/j.engstruct. 2023.116227.Search in Google Scholar
Xue S, Shen R, Chen W, Shen L. The corrosion-fatigue measurement test of the Zn-Al alloy coated steel wire. Structures. 2020;27:1195-1201. http://doi.org/10.1016/j.istruc.2020.07.022.Search in Google Scholar
Jiang C, Ding H, Gu X-L, Zhang W-P. Failure mode-based calculation method for bearing capacities of corroded RC columns under eccentric compression. Eng Struct. 2023;285:116038. http://doi.org/10.1016/j.engstruct.2023.116038.Search in Google Scholar
Tran NL. Shear model mSM-c for slender reinforced concrete members without shear reinforcement subjected to fatigue loads. Eng Struct. 2021;233:111886. http://doi.org/10.1016/j.engstruct.2021.111886.Search in Google Scholar
Xu Y, Liu X, Wang B, Yi X. Residual mechanical properties of composite beams with PBL connectors under fatigue loads. Structures. 2023;51:185-195. http://doi.org/10.1016/j.istruc.2023.03.051.Search in Google Scholar
Zhao G, Li J, Zhang M, Yi Y. Experimental study on the bearing capacity and fatigue life of lightning rod structure joints in high-voltage substation structures. Thin-Walled Struct. 2022;175:109282. http://doi.org/10.1016/j.tws.2022.109282.Search in Google Scholar
Zhu D, Ding Z, Huang X, Li X. Probabilistic modeling for long-term fatigue reliability of wind turbines based on Markov model and subset simulation. Int J Fatigue. 2023;173:107685. http://doi.org/10.1016/j.ijfatigue.2023.107685.Search in Google Scholar
Han X, Frangopol DM. Fatigue reliability analysis considering corrosion effects and integrating SHM information. Eng Struct. 2022;272:114967. http://doi.org/10.1016/j.engstruct.2022.114967.Search in Google Scholar
Huang MF, Tang G, Tao MX, Liao S, Gao M, Nie X. Wind-induced high-order vibration of a twin-mast with large cross-section at top of Saige Plaza Building. J Build Struct. 2022;43(12):1-10. http://doi.org/10.14006/j.jzjgxb.2021.0539.Search in Google Scholar
Sollund HA, Vedeld K, Fyrileiv O, Hellesland J. Improved assessments of wave-induced fatigue for free spanning pipelines. Appl Ocean Res. 2016;61:130-147. http://doi.org/10.1016/j.apor.2016.10.004.Search in Google Scholar
Hassanieh A, Chiniforush AA, Valipour HR, Bradford MA. Vibration behaviour of steel-timber composite floors, part (2): Evaluation of human-induced vibrations. J Constr Steel Res. 2019;158:156-170. http://doi.org/10.1016/j.jcsr.2019.03.026.Search in Google Scholar
Charewicz A, Daniel IM. Damage mechanisms and accumulation in graphite/epoxy laminates. In: Hahn HT, editor. ASTM Special Technical Publication: ASTM; 1986. p. 274-297.Search in Google Scholar
Castaño JG, Botero CA, Restrepo AH, Agudelo EA, Correa E, Echeverría F. Atmospheric corrosion of carbon steel in Colombia. Corros Sci. 2010;52(1):216-223. http://doi.org/10.1016/j.corsci.2009.09.006.Search in Google Scholar
Chico B, de la Fuente D, Díaz I, Simancas J, Morcillo M. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials (Basel). 2017;10(6):601. http://doi.org/10.3390/ma10060601.Search in Google Scholar
Panchenko YM, Marshakov AI. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corros Sci. 2016;109:217-229. http://doi.org/10.1016/j.corsci.2016.04.002.Search in Google Scholar