This work is licensed under the Creative Commons Attribution 4.0 International License.
Pezzotti, G., Marin, E., Adachi, T., Lerussi, F., & Mazda, O. (2018). Incorporating si3n4 into peek to produce antibacterial, osteocondutive, and radiolucent spinal implants. Macromolecular Bioscience, 18(6). Search in Google Scholar
Venla, S., Anna K., H., Luise, M., Katharina, J., Lena, B., & Katja A., Lüders, et al. (2023). Scoliosis treatment with growth-friendly spinal implants (gfsi) relates to low bone mineral mass in children with spinal muscular atrophy. Journal of pediatric orthopaedics.Search in Google Scholar
Luca, A., Gallazzi, E., Vecchi, E. D., Marco Brayda-Bruno, & Bidossi, A. (2020). Bacterial adhesion on spinal implants: an in vitro study of “hot spots”. Journal of Orthopaedic Research(12). Search in Google Scholar
Muemlller, B. S., Ryang, Y. M., Oechsner, M., Duemlsberg, M., Meyer, B., & Combs, S. E., et al. (2018). The dosimetric impact of uncertainties in hu assignment of spinal implants for photon and proton rt: carbon vs titanium screw systems. Medical Physics(6), 45.Search in Google Scholar
Poel, R., Belosi, F. M., Albertini, F., Walser, M., & Weber, D. C. (2019). Titanium vs cfr-peek spinal implants in pbs proton therapy. International Journal of Radiation Oncology*Biology*Physics, 105(1), E695-E696.Search in Google Scholar
Fras, S. I., & Fras, C. I. (2018). Identification of titanium alloy lumbar spinal implants by current metal detectors. Journal of the American College of Surgeons, 227(4), e189.Search in Google Scholar
Chan, A., Coutts, B., Parent, E., & Lou, E. (2020). Development and evaluation of ct-to-3d ultrasound image registration algorithm in vertebral phantoms for spine surgery. Annals of Biomedical Engineering(6). Search in Google Scholar
Saini, A., Elhattab, K., Gummadi, S. K., Nadkarni, G. R., & Sikder, P. (2022). Fused filament fabrication-3d printing of poly-ether-ether-ketone (peek) spinal fusion cages. Materials Letters.Search in Google Scholar
Xin, X., Liu, X., Zhu, Y., Li, J., Yue, C., & Hao, D. (2023). 3d-printed guide plate system-assisted thoracolumbar kyphosis osteotomy: a technical case series. World neurosurgery.Search in Google Scholar
Ijaz, M. K., Shomenov, K., Otegen, D., Shehab, E., & Ali, M. H. (2023). Design and development of a 3d printed water driven spinal posture corrector. The International Journal of Advanced Manufacturing Technology.Search in Google Scholar
Lvov, V., Senatov, F., Shinkaryov, A., Chernyshikhin, S. V., Gromov, A., & Sheremetyev, V. (2023). Experimental 3d printed re-entrant auxetic and honeycomb spinal cages based on ti-6al-4v: computer-aided design concept and mechanical characterization. Composite Structures.Search in Google Scholar
Fischhaber, N., Faber, J., Bakirci, E., Dalton, P., Budday, S., & Villmann, C., et al. (2021). Spinal cord neuronal network formation in a 3d printed reinforced matrix—a model system to study disease mechanisms (adv. healthcare mater. 19/2021). Advanced Healthcare Materials, 10.Search in Google Scholar
Aurand, E. R., Usmani, S., Medelin, M., Scaini, D., Bosi, S., & Rosselli, F. B., et al. (2018). Nanostructures to engineer 3d neural-interfaces: directing axonal navigation toward successful bridging of spinal segments. Advanced Functional Materials, 28(12), 1700550.1-1700550.12.Search in Google Scholar
Foltz, M. H., Freeman, A. L., Loughran, G., Bechtold, J. E., & Polly, D. W. (2019). Mechanical performance of posterior spinal instrumentation and growing rod implants: experimental and computational study. Spine, 44(18), 1.Search in Google Scholar
Lin, Y. H., Chou, C. S., & Teng, M. (2023). The choice of region of interest after spinal procedures alters bone mineral density measurements. PLOS ONE, 18.Search in Google Scholar
Tappa, K., Bird, J. E., Arribas, E. M., & Santiago, L. (2024). Multimodality imaging for 3d printing and surgical rehearsal in complex spine surgery. Radiographics(3), 44.Search in Google Scholar
Brown, P. H., Carter, J. R., Moyade, P., Mohammed, M., De Matas, M., & Vinjamuri, S. (2020). Real-world experience of the role of 18f fdg pet-computed tomography in chronic spinal implant infection. Nuclear Medicine Communications, 41.Search in Google Scholar
Liu, S., & Blesch, A. (2018). Targeted tissue engineering: hydrogels with linear capillary channels for axonal regeneration after spinal cord injury. Neural Regeneration Research, 13(4), 641.Search in Google Scholar
Schachtner, J. T. (2018). Is fused filament fabrication a viable fabrication method for bioabsorbable devices? development of a 3d printed clip for prevention of spinal fusion infection. Theory of Computing Systems ¥/ Mathematical Systems Theory, 38.Search in Google Scholar
Joung, D., Truong, V., Neitzke, C. C., Guo, S. Z., Walsh, P. J., & Monat, J. R., et al. (2018). Spinal cord scaffolds: 3d printed stem-cell derived neural progenitors generate spinal cord scaffolds (adv. funct. mater. 39/2018). Advanced Functional Materials, 28(39). Search in Google Scholar
Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J. N., & Brock, J., et al. (2019). Biomimetic 3d-printed scaffolds for spinal cord injury repair. Nature Medicine.Search in Google Scholar
Egan, P. F., Bauer, I., Shea, K., & Ferguson, S. J. (2018). Mechanics of 3d printed lattices for biomedical devices. Journal of Mechanical Design, 141(3). Search in Google Scholar