Open Access

Spleen Derived Immune Cells in Acute Ischemic Brain Injury: A Short Review


Cite

1. The World Health Organization (WHO) updates fact sheet on Top 10 causes of Death, https://communitymedicine4asses.wordpress.com/2017/02/01/who-updates-fact-sheet-on-top-10-causes-of-death-27-january-2017Search in Google Scholar

2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA – Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2014; 383(9913):245-25410.1016/S0140-6736(13)61953-4Search in Google Scholar

3. Alves JE, Carneiro A, Xavier J –Reliability of CT perfusion in the evaluation of the ischaemic penumbra. Neuroradiol J 2014; 27(1):91-9510.15274/NRJ-2014-10010420284924571838Search in Google Scholar

4. Fluri F, Schuhmann MK, Kleinschnitz C – Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 2015; 9:3445-3454Search in Google Scholar

5. Fuhrer H, Günther A, Zinke J – Optimizing cardiac output to increase cerebral penumbral perfusion in large middle cerebral artery ischemic lesion-OPTIMAL study. Front Neurol. 2017; 8:40210.3389/fneur.2017.00402555412728848494Search in Google Scholar

6. Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D – Brain-spleen inflammatory coupling: a literature review. Einstein J Biol Med. 2011; 27(2):74-77Search in Google Scholar

7. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al – Ischemic stroke activates hematopoietic bone marrow cells. Circ Res. 2015 Jan;116(3):407-1710.1161/CIRCRESAHA.116.305207431251125362208Search in Google Scholar

8. Schwartz-Bloom RD, Sah R – gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem. 2001; 77(2):353-71Search in Google Scholar

9. Mele M, Costa RO, Duarte CB – Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci. 2019; 13:7710.3389/fncel.2019.00077641622330899215Search in Google Scholar

10. Gelderblom M, Leypoldt F, Steinbach K, et al. – Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009; 40(5):1849-185710.1161/STROKEAHA.108.53450319265055Search in Google Scholar

11. Jin R, Yang G, Li G – Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010; 87(5):779-78910.1189/jlb.1109766285867420130219Search in Google Scholar

12. Liu ZJ, Chen C, Li FW, et al – Splenic response in ischemic stroke: new insights into stroke pathology. CNS Neurosci Ther. 2015; 21(4):320-32610.1111/cns.12361649527925475834Search in Google Scholar

13. Kim E, Yang J, Beltran CD, Cho S – Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab. 2014; 34:1411–141910.1038/jcbfm.2014.101412608724865998Search in Google Scholar

14. Yan FL, Zhang JH – Role of the Sympathetic Nervous System and Spleen in Experimental Stroke-Induced Immunodepression. Med Sci Monit. 2014; 20:2489-249610.12659/MSM.890844426062025434807Search in Google Scholar

15. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD – Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006; 26(5):654-6510.1038/sj.jcbfm.960021716121126Search in Google Scholar

16. Amantea D, Certo M, Petrelli F, Bagetta G –Neuroprotective Properties of Macrolide Antibiotic in Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay Drug Dev Technol. 2016 ;14(5):298-30710.1089/adt.2016.728496049427392039Search in Google Scholar

17. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D – Activation of RXR/PPAR gamma underlines neuroprotection by bexarotene in ischemic stroke. Pharmacol Res. 2015; 102:298-30710.1016/j.phrs.2015.10.00926546745Search in Google Scholar

18. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR – A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012; 7(4):1017–102410.1007/s11481-012-9406-8351857723054371Search in Google Scholar

19. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of neurology. 2013;74(3):458–7110.1002/ana.23815374816523674483Search in Google Scholar

20. Noble BT, Brennan FH, Popovich PG – The spleen as a neuroimmune interface after spinal cord injury. J. Neuroimmunol. 2018; 321:1–1110.1016/j.jneuroim.2018.05.00729957379Search in Google Scholar

21. Cesta MF – Normal structure, function, and Histology of the spleen. Toxicol Pathol. 2006; 34:455-46510.1080/0192623060086774317067939Search in Google Scholar

22. Steiniger BS – Human spleen microanatomy: why mice do not suffice. Immunology 2015; 145: 334–34610.1111/imm.12469447953325827019Search in Google Scholar

23. Vahidy FS, Parsha KN, Rahbar MH, et al. – Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metab. 2016; 36(6):1012-102110.1177/0271678X15607880490862026661179Search in Google Scholar

24. Pennypacker KR, Offner H – The role of the spleen in ischemic stroke. J Cereb Blood Flow Metab. 2015; 35(2):186-710.1038/jcbfm.2014.212442675425465042Search in Google Scholar

25. Okuaki Y, Miyazaki H, Zeniya M, et al. – Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver. 1996; 16(3):188-19410.1111/j.1600-0676.1996.tb00726.xSearch in Google Scholar

26. Savas MC, Ozguner M, Ozguner IF, Delibas N – Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg. 2003; 38(10):1465-147010.1016/S0022-3468(03)00497-4Search in Google Scholar

27. Leuschner F, Panizzi P, Chico-Calero I, et al – Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364-137310.1161/CIRCRESAHA.110.227454299210420930148Search in Google Scholar

28. Hurn PD, Subramanian S, Parker SM, – T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Bood Flow Metab. 2007; 27(11):1798-180510.1038/sj.jcbfm.9600482259268917392692Search in Google Scholar

29. Offner H, Subramanian S, Parker SM, et al. – Splenic atrophy in experimental stroke is accompanied by increased regulatory T Cells and circulating macrophages. J Immunol. 2006; 176:6523-653110.4049/jimmunol.176.11.652316709809Search in Google Scholar

30. Kriz J – 2006. Inflammation in ischemic brain injury: timing is important. Crit. Rev. Neurobiol. 2006; 18(1-2):145-15710.1615/CritRevNeurobiol.v18.i1-2.15017725517Search in Google Scholar

31. Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y – The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010; 1(7):74Search in Google Scholar

32. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015 Jun;35(6):888-90110.1038/jcbfm.2015.45464025525806703Search in Google Scholar

33. Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, Chamorro A, Planas AM. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003; 23: 1430–144010.1097/01.WCB.0000090680.07515.C814663338Search in Google Scholar

34. Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, Miller K, Gearing AJ, Kaczmarek L, Khrestchatisky M. Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci. 2002; 15: 19–3210.1046/j.0953-816x.2001.01838.x11860503Search in Google Scholar

35. Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, Gonzalez MA, Monasterio J. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001; 32: 1759–176610.1161/01.STR.32.8.175911486102Search in Google Scholar

36. Rosell A, Ortega-Aznar A, Alvarez-Sabin, J, et al. – Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006; 37:1399-140610.1161/01.STR.0000223001.06264.afSearch in Google Scholar

37. Yang Y, Rosenberg GA – Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015; 1623:30-3810.1016/j.brainres.2015.04.024Search in Google Scholar

38. Ajmo CT Jr, Collier LA, Leonardo CC et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218(1):47–5510.1016/j.expneurol.2009.03.044Search in Google Scholar

39. Zhang HT, Zhang P, Gao Y, et al. – Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol. Med. Rep. 2017; 15:57-64Search in Google Scholar

40. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV – Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011; 6(1):1110.1186/1750-1326-6-11Search in Google Scholar

41. Yilmaz G, Arumugam T V, Stokes K Y, Granger D N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006; 113:2105–2112.10.1161/CIRCULATIONAHA.105.593046Search in Google Scholar

42. Hurn P D, Subramanian S, Parker S M, Afentoulis M E, Kaler L J, Vandenbark A A, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007; 27:1798–180510.1038/sj.jcbfm.9600482Search in Google Scholar

43. Prass K, Meisel C, Höflich C Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation.J Exp Med. 2003 Sep 1;198(5):725-3610.1084/jem.20021098Search in Google Scholar

44. Shi K, Wood K, Shi FD, Wang X, Liu Q. Stroke-induced immunosuppression and poststroke infection.Stroke Vasc Neurol. 2018 Jan 12;3(1):34-41.10.1136/svn-2017-000123Search in Google Scholar

45. Arumugam T V, Granger D N, Mattson M P. Stroke and T-cells. Neuromolecular Med. 2005; 7:229–242.10.1385/NMM:7:3:229Search in Google Scholar

46. Dotson AL, Zhu W, Libal N, Alkayed NJ, Offner H. Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy. Front Cell Neurosci. 2014; 8:284.10.3389/fncel.2014.00284417476825309326Search in Google Scholar

47. Planas AM, Gómez-Choco M, Urra X, Gorina R, Caballero M, Chamorro Á – Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol. 2012; 188:2156-216310.4049/jimmunol.110228922287710Search in Google Scholar

48. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of neurology. 2013;74(3):458–71.10.1002/ana.23815374816523674483Search in Google Scholar

49. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–19910.1038/nm.192719169263Search in Google Scholar

50. Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–691.10.1182/blood-2012-04-426734379094723160472Search in Google Scholar

51. Xia Y, Cai W, Thomson AW, Hu X. Regulatory T Cell Therapy for Ischemic Stroke: how far from Clinical Translation? Transl Stroke Res. 2016;7(5):415-9Search in Google Scholar

52. Offner H, Subramanian S, Parker SM, et al. – Splenic atrophy in experimental stroke is accompanied by increased regulatory T Cells and circulating macrophages. J Immunol. 2006; 176:6523-653110.4049/jimmunol.176.11.652316709809Search in Google Scholar

53. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua D J, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med. 2009; 15:946–95010.1038/nm.199919648929Search in Google Scholar

54. Chen C, Jiang W, Liu Z, et al. – Splenic responses play an important role in remote ischemic preconditioning-mediated neuroprotection against stroke. J Neuroinflammation. 2018;15(1):16710.1186/s12974-018-1190-9597244829807548Search in Google Scholar

55. Rehg JE, Bush D, Ward M – The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissue and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicologic Pathology 2012; 40:345-37410.1177/019262331143069522434870Search in Google Scholar

56. Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H. Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis. 2012; 27:487–49310.1007/s11011-012-9317-7342771522618587Search in Google Scholar

57. Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res. 2012; 3:324–33010.1007/s12975-012-0187-4350127223175646Search in Google Scholar

58. Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C – B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation. 2017; 14:11210.1186/s12974-017-0890-x545773328576128Search in Google Scholar

59. Doyle KP, Quach LN, Solé M, et al. – B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 2015; 35(5):2133-214510.1523/JNEUROSCI.4098-14.2015431583825653369Search in Google Scholar

60. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H – Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice Metab Brain Dis. 2014; 29(1):59-7310.1007/s11011-013-9474-3394405524374817Search in Google Scholar

61. Seifert HA, Leonardo CC, Hall AA et al. –The spleen contributes to stroke induced neurodegeneration through interferon gammasignaling. Metab Brain Dis. 2012; 27(2):131-141.10.1007/s11011-012-9283-0473973622354752Search in Google Scholar

62. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA – Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):14210.1186/s12974-019-1516-2661768431291966Search in Google Scholar

63. Amantea D. Polarizing the immune system towards neuroprotection in brain ischemia. Neural Regen Res (2016); 11(1):81-8210.4103/1673-5374.169633477423726981089Search in Google Scholar

64. Bao Y, Kim E, Bhosle S, Mehta H, Cho S – A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation. 2010; 7:9210.1186/1742-2094-7-92301627321159187Search in Google Scholar

65. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG – The ischemic environment drives microglia and macrophage function. Front Neurol. 2015; 6: e8110.3389/fneur.2015.00081438940425904895Search in Google Scholar

66. Kawabori M., Kacimi R., Kauppinen T., Calosing C., Kim J.Y., Hsieh C.L., Nakamura M.C., Yenari M.A. Ttriggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 2015; 35:3384–339610.1523/JNEUROSCI.2620-14.2015433935125716838Search in Google Scholar

67. Nakagawa Y, Chiba K. – Role of microglial M1/M2 polarisation in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7(12): 1028-104810.3390/ph7121028427690525429645Search in Google Scholar

68. Chiba, T, Umegaki, K –2013. Pivotal Roles of Monocytes/Macrophages in Stroke. Mediators Inflamm. 2013, 75910310.1155/2013/759103356888923431245Search in Google Scholar

69. Kanazawa, M., Ninomiya, I., Hatakeyama, M., Takahashi, T., Shimohata, T., 2017. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci.18(10), E 213510.3390/ijms18102135566681729027964Search in Google Scholar

70. Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orãdan A, Nagy EE – Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol. 2018; 324:35-4210.1016/j.jneuroim.2018.08.00230212790Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other