Open Access

Current Knowledge About the Implication of Bacterial Microbiota in Human Health and Disease

   | Nov 20, 2021

Cite

1. Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778):1355-1359. Search in Google Scholar

2. Franzosa EA, Morgan XC, Segata N et al. Relating the meta-transcriptome and metagenome of the human gut. Proc Natl Acad Sci. 2014; 111(22):E2329. Search in Google Scholar

3. Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285):59-65. Search in Google Scholar

4. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016; 14(8):e1002533. Search in Google Scholar

5. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO reports 2006; 7(7):688-693. Search in Google Scholar

6. Turnbaugh PJ, Ley RE, Mahowald MA. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027-1031. Search in Google Scholar

7. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004 Sep;92(3):521-6. doi: 10.1079/bjn20041225. Search in Google Scholar

8. Perry RJ, Peng L, Barry NA et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 2016; 534(7606):213-217. Search in Google Scholar

9. Roberfroid MB, Bornet F, Bouley C et al. Colonic microflora: nutrition and health. Summary and conclusions of an International Life Sciences Institute (ILSI) [Europe] workshop held in Barcelona, Spain. Nutrition Reviews. 1995; 53(5):127-130. Search in Google Scholar

10. Cash HL, Whitham CV, Behrendt CL et al. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006; 313(5790):1126-1130. Search in Google Scholar

11. Schauber J, Svanholm C, Termen S et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut. 2003; 52(5):735-741. Search in Google Scholar

12. Bouskra D, Brezillon C, Berard M et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456(7221):507-510. Search in Google Scholar

13. Rakoff-Nahoum S, Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol, 2008,1, S10–S14. Search in Google Scholar

14. Turnbaugh PJ, Ley RE, Mahowald MA et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027-1031. Search in Google Scholar

15. Karlsson F, Tremaroli V, Nielsen J et al. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013; 62(10):3341-3349. Search in Google Scholar

16. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336(6086):1268-1273. Search in Google Scholar

17. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013; 13(11):790-801. Search in Google Scholar

18. Wang B, Yao M, Lv L et al. The Human Microbiota in Health and Disease. Engineering 2017; 3(1):71-82. Search in Google Scholar

19. Gosalbes MJ, Durban A, Pignatelli M et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PloS one 2011; 6(3):e17447. Search in Google Scholar

20. Olsen GJ, Lane DJ, Giovannoni SJ et al. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology. 1986; 40:337-365. Search in Google Scholar

21. Schlessinger D, Ono M, Nikolaev N et al. Accumulation of 30S preribosomal ribonucleic acid in an Escherichia coli mutant treated with chloramphenicol. Biochemistry. 1974; 13(21):4268-4271. Search in Google Scholar

22. Santiago-Rodriguez TM, Naidu M, Abeles SR et al. Transcriptome analysis of bacteriophage communities in periodontal health and disease. BMC Genomics. 2015; 16:549. Search in Google Scholar

23. Arnold JW, Roach J, Azcarate-Peril MA. Emerging Technologies for Gut Microbiome Research. Trends Microbiol. 2016; 24(11):887-901. Search in Google Scholar

24. Nichols D, Cahoon N, Trakhtenberg EM et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Applied and Environmental Microbiology. 2010; 76(8):2445-2450. Search in Google Scholar

25. Jung D, Seo EY, Epstein SS et al. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiology Ecology 2014; 90(2):417-423. Search in Google Scholar

26. Kim HJ, Huh D, Hamilton G et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a chip 2012; 12(12):2165-2174. Search in Google Scholar

27. Englert DL, Manson MD, Jayaraman A. Investigation of bacterial chemotaxis in flow-based microfluidic devices. Nature Protocols. 2010; 5(5):864-872. Search in Google Scholar

28. Wang Y, Ahmad AA, Sims CE et al. In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab on a chip 2014; 14(9):1622-1631. Search in Google Scholar

29. Gracz AD, Williamson IA, Roche KC et al. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat. Cell Biol. 2015; 17(3):340-349. Search in Google Scholar

30. Forbester JL, Goulding D, Vallier L et al. Interaction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells. Infection and Immunity. 2015; 83(7):2926-2934. Search in Google Scholar

31. Leslie JL, Huang S, Opp JS et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity. 2015; 83(1):138-145. Search in Google Scholar

32. Elgueta MF, Echevarria GC, De la Fuente N et al. Effect of intravenous fluid therapy on postoperative vomiting in children undergoing tonsillectomy. Br J Anaesth. 2013; 110(4):607-614. Search in Google Scholar

33. Xuan C, Shamonki JM, Chung A et al. Microbial dysbiosis is associated with human breast cancer. PloS one. 2014; 9(1):e83744. Search in Google Scholar

34. Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R et al. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Scientific Reports 2014; 4:4202. Search in Google Scholar

35. Dicksved J, Lindberg M, Rosenquist M et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J. Med. Microbiol. 2009; 58(Pt 4):509-516. Search in Google Scholar

36. Peek RM, Jr., Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol. 2006; 208(2):233-248. Search in Google Scholar

37. Correa P: Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Research. 1992, 52(24):6735-6740. Search in Google Scholar

38. Coker OO, Dai Z, Nie Y et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018; 67(6):1024-1032. Search in Google Scholar

39. Lichtenstein P, Holm NV, Verkasalo PK et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2):78-85. Search in Google Scholar

40. Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008; 359(20):2143-2153. Search in Google Scholar

41. Arumugam M, Raes J, Pelletier E et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346):174-180. Search in Google Scholar

42. Wong SH, Zhao L, Zhang X et al. Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 2017; 153(6):1621-1633 e1626. Search in Google Scholar

43. Cuevas-Ramos G, Petit CR, Marcq I et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences 2010; 107(25):11537. Search in Google Scholar

44. Dai Z, Coker OO, Nakatsu G et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 2018; 6(1):70. Search in Google Scholar

45. Drewes JL, White JR, Dejea CM et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 2017; 3:34. Search in Google Scholar

46. Abreu MT, Peek RM, Jr.. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014; 146(6):1534-1546 e1533. Search in Google Scholar

47. Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis. 2011; 203(3):306-311. Search in Google Scholar

48. Bracci PM. Oral Health and the Oral Microbiome in Pancreatic Cancer: An Overview of Epidemiological Studies. Cancer J. 2017; 23(6):310-314. Search in Google Scholar

49. Ahn J, Segers S, Hayes RB. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis 2012; 33(5):1055-1058. Search in Google Scholar

50. Tezal M, Sullivan MA, Hyland A et al. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2009; 18(9):2406-2412. Search in Google Scholar

51. Mai X, LaMonte MJ, Hovey KM et al. History of periodontal disease diagnosis and lung cancer incidence in the Women’s Health Initiative Observational Study. Cancer Causes Control : CCC 2014; 25(8):1045-1053. Search in Google Scholar

52. Freudenheim JL, Genco RJ, LaMonte MJ et al. Periodontal Disease and Breast Cancer: Prospective Cohort Study of Postmenopausal Women. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2016; 25(1):43-50. Search in Google Scholar

53. Farrell JJ, Zhang L, Zhou H et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012; 61(4):582. Search in Google Scholar

54. Fan X, Alekseyenko AV, Wu J et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1):120. Search in Google Scholar

55. Lagergren J, Bergstrom R, Lindgren A et al. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999; 340(11):825-831. Search in Google Scholar

56. Pei Z, Pei Z, Bini EJ et al. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101(12):4250-4255. doi:10.1073/pnas.0306398101 Search in Google Scholar

57. Finlay IG, Wright PA, Menzies T et al. Microbial flora in carcinoma of oesophagus. Thorax 1982; 37(3):181-184. Search in Google Scholar

58. Hamada H, Haruma K, Mihara M et al. High incidence of reflux oesophagitis after eradication therapy for Helicobacter pylori: impacts of hiatal hernia and corpus gastritis. Aliment Pharmacol Ther. 2000; 14(6):729-735. Search in Google Scholar

59. Sommer F, Backhed F. The gut microbiota--masters of host development and physiology. Nature Reviews Microbiology 2013; 11(4):227-238. Search in Google Scholar

60. Le Chatelier E, Nielsen T, Qin J et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464):541-546. Search in Google Scholar

61. David LA, Maurice CF, Carmody RN et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484):559-563. Search in Google Scholar

62. Caesar R, Tremaroli V, Kovatcheva-Datchary P et al. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabol. 2015; 22(4):658-668. Search in Google Scholar

63. Leone V, Gibbons SM, Martinez K et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015; 17(5):681-689. Search in Google Scholar

64. Thaiss CA, Zeevi D, Levy M et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014; 159(3):514-529. Search in Google Scholar

65. Pedersen HK, Gudmundsdottir V, Nielsen HB et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535(7612):376-381. Search in Google Scholar

66. Forslund K, Hildebrand F, Nielsen T et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528(7581):262-266. Search in Google Scholar

67. Frost F, Kacprowski T, Rühlemann M, et al. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut. 2021; 70(3):522-530. doi: 10.1136/gutjnl-2020-322753. Search in Google Scholar

68. Bunyavanich S, Shen N, Grishin A et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 2016; 138(4):1122-1130. Search in Google Scholar

69. Atarashi K, Tanoue T, Shima T et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331(6015):337-341. Search in Google Scholar

70. Ling Z, Li Z, Liu X et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014; 80(8):2546-2554. Search in Google Scholar

71. Maes M, Kubera M, Leunis JC et al. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012; 141(1):55-62. Search in Google Scholar

72. Rieder R, Wisniewski PJ, Alderman BL et al. Microbes and mental health: A review. Brain, Behavior, and Immunity 2017; 66:9-17. Search in Google Scholar

73. Kennedy PJ, Murphy AB, Cryan JF et al. Microbiome in brain function and mental health. Trends in Food Science & Technology 2016; 57:289-301. Search in Google Scholar

74. Yano JM, Yu K, Donaldson GP et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2):264-276. Search in Google Scholar

75. Barrett E, Ross RP, O’Toole PW et al. gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol.2012; 113(2):411-417. Search in Google Scholar

76. Wang C, Geng H, Liu W et al. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine 2017; 96(18):e6696. Search in Google Scholar

77. Fond G, Boukouaci W, Chevalier G et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathologie-biologie 2015; 63(1):35-42. Search in Google Scholar

78. Finegold SM, Dowd SE, Gontcharova V et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16(4):444-453. Search in Google Scholar

79. Wang L, Christophersen CT, Sorich MJ et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011; 77(18):6718-6721. Search in Google Scholar

80. Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69(10):1867-1876. Search in Google Scholar

81. Bachmann R, Leonard D, Delzenne N et al. Novel insight into the role of microbiota in colorectal surgery. Gut 2017; 66(4):738-749. Search in Google Scholar

82. Geller LT, Barzily-Rokni M, Danino T et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017; 357(6356):1156-1160. Search in Google Scholar

83. Paci A, Veal G, Bardin C et al. Review of therapeutic drug monitoring of anticancer drugs part 1 – Cytotoxics. Eur J Cancer 2014; 50(12):2010-2019. Search in Google Scholar

84. Vanhoefer U, Harstrick A, Achterrath W et al. Irinotecan in the treatment of colorectal cancer: clinical overview. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology 2001; 19(5):1501-1518. Search in Google Scholar

85. Wallace BD, Wang H, Lane KT et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010; 330(6005):831-835. Search in Google Scholar

86. Mima K, Nishihara R, Qian ZR et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65(12):1973-1980. Search in Google Scholar

87. Montassier E, Al-Ghalith GA, Ward T et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome medicine 2016; 8(1):49. Search in Google Scholar

88. Galloway-Pena JR, Smith DP, Sahasrabhojane P et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer 2016; 122(14):2186-2196. Search in Google Scholar

eISSN:
2719-5384
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other