This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Szczepaniak R, Rolecki K, Krzyzak A. The influence of the powder additive upon selected mechanical properties of a composite. IOP Conference Series: Materials Science and Engineering 2019;634(1):01200. 76th Global Conference on Polymer and Composite Materials. PCM 2019. Bangkok. Available from: https://doi.org/10.1088/1757-899X/634/1/012007Search in Google Scholar
Borowiec M, Gawryluk J, Bochenski M. Influence of Mechanical Couplings on the Dynamical Behavior and Energy Harvesting of a Composite Structure. Polymers 2021;13:66. Available from: https://doi.org/10.3390/polym13010066Search in Google Scholar
Sławski S, Szymiczek M, Kaczmarczyk J, Domin J, Świtoński E. Low Velocity Impact Response and Tensile Strength of Epoxy Composites with Different Reinforcing Materials. Materials 2020;13:3059. Available from: https://doi.org/10.3390/ma13143059Search in Google Scholar
Kosicka E, Borowiec M, Kowalczuk M, Krzyzak A, Szczepaniak. R. Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites Used in the Aviation Industry. Materials 2020;13:5479. Available from: https://doi.org/10.3390/ma13235479Search in Google Scholar
Komorek. A; Komorek Z, Krzyzak A, Przybylek P, Szczepaniak R. Impact of Frequency of Load Changes in Fatigue Tests on the Temperature of the Modified Polymer. International Journal of Thermo-physics 2017;38(8):128. Available from: https://doi.org/10.1007/s10765-017-2254-2Search in Google Scholar
Szczepaniak R, Kozun G, Przybylek P, Komorek A, Krzyzak A, Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid composite. Composite Structures 2021;256:113041. Available from: https://doi.org/10.1016/j.compstruct.2020.113041Search in Google Scholar
Krzyzak A, Kosicka E, Szczepaniak R, Szymczak T. Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear. Journal of Achievements in Materials and Manufacturing Engineering Open Access 2019;95:5–12. Available from: http://doi.org/10.5604/01.3001.0013.7619Search in Google Scholar
Mrówka M, Woźniak A, Prężyna S, Sławski S. The Influence of Zinc Waste Filler on the Tribological and Mechanical Properties of Silicone-Based Composites. Polymers 2021;13:585. Available from: https://doi.org/10.3390/polym13040585Search in Google Scholar
Yogeshwarana S, Natrayan L, Rajaraman S, Parthasarathi S, Nestro S. Experimental investigation on mechanical properties of Epoxy/graphene/fish scale and fermented spinach hybrid bio composite by hand lay-up technique. Materials Today: Proceedings 2021:37(2):1578-1583. Available from: https://doi.org/10.1016/j.matpr.2020.07.160Search in Google Scholar
Zagorodnuk LKh, Lesovik VS, Elistratkin MY, Sumskoy DA, Makhortov DS, Zolotykh SV. New methods for manufacturing composite materials. Journal of Physics: Conference Series 2019;1353:012060.Search in Google Scholar
Kia HG, Simmer JC. A New Method for Producing Composite Panels with Textured Finish using Open Molding Process: Part I - Technology Development. Journal of Composite Materials 2006;40(4):333-344. Available from: https://doi.org/10.1177/0021998305055191Search in Google Scholar
Petrucci R, Torre L. Filled Polymer Composites. In: Modification of Polymer Properties; William Andrew Publishing (Norwich, USA). 2017;23–46.Search in Google Scholar
Amgoth C, Phan C, Banavoth M, Rompivalasa S, Tang G. Polymer Properties: Functionalization and Surface Modified Nanoparticles. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; IntechOpen (London, UK). 2019. Available from: https://doi.org/10.5772/intechopen.84424Search in Google Scholar
Jasso-Gastine CF, Soltero-Martínez JFA, Mendizábal E. Introduction: Modifiable Characteristics and Applications. In: Modification of Polymer Properties; William Andrew Publishing (Norwich, USA). 2017; 1–21.Search in Google Scholar
Ambrogi V, Carfagna C, Cerruti P, Marturano V. Additives in Polymers. In Modification of Polymer Properties; William Andrew Publishing (Norwich, USA). 2017;87–108.Search in Google Scholar
Gooch JW. Heat Deflection Temperature. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer. 2011 (New York, USA). Available from: https://doi.org/10.1007/978-1-4419-6247-8_5831Search in Google Scholar
Gooch JW. Vicat Test. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer. 2011 (New York, USA). Available from: https://doi.org/10.1007/978-1-4419-6247-8_12522Search in Google Scholar
Bee SL, Abdullah MAA, Bee ST, Sin LT, Rahmat AR. Polymer nano-composites based on silylated-montmorillonite: A review. Progress in Polymer Science 2018;85:57–82. Available from: https://doi.org/10.1016/j.progpolymsci.2018.07.003Search in Google Scholar
Guo YX, Liu JH, Gates WP. et al. Organo-Modification Of Montmorillonite. Clays Clay Miner. 2020;68:601–622. Available from: https://doi.org/10.1007/s42860-020-00098-2Search in Google Scholar
Mishra S, Shimpi NG, Mali AD. Effect of surface modified montmorillonite on photo-oxidative degradation of silicone rubber composites. Macromolecular Research 2013;21(5):466–473.Search in Google Scholar
Tokobaro PEA, Larocca NM, Backes EH, Pessan LA. Effects of mineral fillers addition and preparation method on the morphology and electrical conductivity of epoxy/multiwalled carbon nanotube nanocomposites. Polymer Engineering and Science 2021;61(2):538-550. Available from: https://doi.org/10.1002/pen.25598Search in Google Scholar
Ramesh P, Prasad BD, Narayana KL. Influence of Montmorillonite Clay Content on Thermal. Mechanical. Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/PLA-Hybrid Biocompo-sites. Silicon 2021;13(1):109-118. Available from: https://doi.org/10.1007/s12633-020-00401-9Search in Google Scholar
Silva LCS, Busto RV, Camani PH, Zanata L, Coelho LHG, Benassi RF, Rosa DS. Influence of Montmorillonite and Clinoptilolite on the Properties of Starch/Minerals Biocomposites and Their Effect on Aquatic Environments. Journal of Polymers and the Environment 2021;29(2):382–391. Available from: https://doi.org/10.1007/s10924-020-01873-xSearch in Google Scholar
Szpilska K, Czaja K, Kudła S. Halloysite nanotubes as polyolefin fillers. Polimery (Polymers) 2015;6:357-422. Available from: https://doi.org/10.14314/polimery.2015.359Search in Google Scholar
Muhammad J, Hafiz M, Naveed M. Properties and Modification Methods of Halloysite Nanotubes: A State-Of-The-Art Review. J. Chil. Chem. Soc. 2018;63(3):4109-4125. Available from: http://dx.doi.org/10.4067/s0717-97072018000304109Search in Google Scholar
Bordeepong S, Bhongsuwan D, Pungrassami T, Bhongsuwan T. Characterization of halloysite from thung yai district. Nakhon Si Thammarat Province. in Southern Thailand. Songklanakarin Journal of Science and Technology 2011;33(5):599-607.Search in Google Scholar
Haddar AE, Gharibi E, Azdimousa A, Fagel N, Hassani IE, Ouahabi ME. Characterization of halloysite (North East Rif. Morocco): evaluation of its suitability for the ceramics industry. Clay Minerals 2018;53:65-78.Search in Google Scholar
Luo Y, Mills DK. The Effect of Halloysite Addition on the Material Properties of Chitosan–Halloysite Hydrogel Composites. Gels 2019;5:40. Available from: https://doi.org/10.3390/gels5030040Search in Google Scholar
Peters PWM, Daniels B, Clemens F, Vogel WD. Mechanical characterisation of mullite-based ceramic matrix composites at test temperatures up to 1200°C. Journal of the European Ceramic Society 2000;20(5):531-535. Available from: https://doi.org/10.1016/S0955-2219(99)00250-2Search in Google Scholar
Schneider H, Komarneni S. Mullite. Mullite 2006;1-487. Available from: https://doi.org/10.1002/3527607358Search in Google Scholar
Kaya C, Butler EG, Selcuk A, Boccaccini AR, Lewis MH. Mullite (NextelTM 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties. Journal of the European Ceramic Society 2002;22(13):2333-2342. Available from: https://doi.org/10.1016/S0955-2219(01)00531-3Search in Google Scholar
Wang KT, Cao LY, Huang JF, Fei J. A mullite/SiC oxidation protective coating for carbon/carbon composites. Journal of the European Ceramic Society 2013;33(1):191-198. Available from: https://doi.org/10.1016/j.jeurceramsoc.2012.08.009Search in Google Scholar
Mucha M, Krzyzak A, Kosicka E, Coy E, Kościński M, Sterzyński T, Sałaciński M. Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications. Materials 2020;13:2696. Available from: https://doi.org/10.3390/ma13122696Search in Google Scholar
Bellucci S, Balasubramanian C, Micciulla F, Rinaldi G. CNT composites for aerospace applications. J. Exp. Nanosci. 2007:2:193–206. Available from: https://doi.org/10.1080/17458080701376348Search in Google Scholar
Setua.DK, Mordina B, Srivastava AK, Roy D, Prasad NE. Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier Science: Amsterdam. The Netherlands. 2020;395–430. Available from: https://doi.org/10.1016/B978-0-12-819904-6.00018-9Search in Google Scholar
Singh NP, Gupta V, Singh AP. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer 2019; 180: 121724. Available from:https://doi.org/10.1016/J.POLYMER.2019.121724Search in Google Scholar
Shen S, Yang L, Wang C, Wei L. Effect of CNT orientation on the mechanical property and fracture mechanism of vertically aligned carbon nanotube/carbon composites. Ceram. Int. 2020;46:4933–4938. Available from: https://doi.org/10.1016/j.ceramint.2019.10.230Search in Google Scholar
Salazar JMGD, Barrena MI, Morales G. Compression strength and wear resistance of ceramic foams-polymer composites. Mater. Lett. 2006;60:1687–1692. Available from: https://doi.org/10.1016/j.matlet.2005.11.092Search in Google Scholar
Henager CH, Shin Y, Blum Y, Giannuzzi LA, Kempshall BW, Schwarz. S.M. Coatings and joining for SiC and SiC-composites for nuclear energy systems. J. Nucl. Mater. 2007;367–370:1139-1143. Available from: https://doi.org/10.1016/j.jnucmat.2007.03.189Search in Google Scholar
DiCarlo JA, Yun HM, Hurst JB. Fracture Mechanisms for SiC Fibers and SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures. Applied Mathematics and Computation 2004;152: 473–481. Available from: https://doi.org/10.1016/S0096-3003(03)00570-8Search in Google Scholar
Suresha B, Chandramohan G, Siddaramaiah B, Sampathkumaran P, Seetharamu S. Mechanical and three-body abrasive wear behaviour of SiC filled glass-epoxy composites. Polymer Composites 2008; 29(9):1020–1025. Available from: https://doi.org/10.1002/pc.20576Search in Google Scholar
Rajesh S, Ramnath BV. Analysis of mechanical behavior of glass fiber/Al2O3-SiC reinforced polymer composites. Global Cong. Manuf. Manage. 2014;97:598–606. Available from: https://doi.org/10.1016/j.proeng.2014.12.288Search in Google Scholar
Product information from Havel Composites Polska Company. Available from: http://www.havel-composites.pl/files/doc/LH_145_zywica_epoksydowa_doc.docSearch in Google Scholar
ISO 75-2:2013 Plastics — Determination of temperature of deflection under load — Part 2: Plastics and eboniteSearch in Google Scholar
ISO 306:2013 Plastics — Thermoplastic materials — Determination of Vicat softening temperature (VST)Search in Google Scholar
ASTM D792 — 20 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by DisplacementSearch in Google Scholar
ISO 48-2:2018 Rubber. vulcanized or thermoplastic — Determination of hardness — Part 2: Hardness between 10 IRHD and 100 IRHDSearch in Google Scholar