Open Access

Novel Pla Composites Modified with Steel Fibres and (3-Thiopropyl) Polysilsesquioxane Derivatives

, , ,  and   
Oct 30, 2024

Cite
Download Cover

Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. 2010; 101(22):8493–501. https://doi.org/10.1016/j.biortech.2010.05.092 Search in Google Scholar

Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11):1504–42. https://doi.org/10.1016/j.progpolymsci.2013.05.014 Search in Google Scholar

Anderson K, Schreck K, Hillmyer M. Toughening Polylactide. Polymer Reviews. 2008; 48(1):85–108. https://doi.org/10.1080/15583720701834216 Search in Google Scholar

Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012 Search in Google Scholar

Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, et al. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing. 2014; 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007 Search in Google Scholar

Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, et al. A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging, International Journal of Biological Macromolecules. 2023; 234:123715. https://doi.org/10.1016/j.ijbiomac.2023.123715 Search in Google Scholar

Claudio L. Waste Couture: Environmental Impact of the Clothing Industry. Environmental health perspectives. 2007;115(9):448–54. https://doi.org/10.1289/ehp.115-a449 Search in Google Scholar

Wang J, Yu J, Bai D, Li Z, Liu H, Li Y, et al. Biodegradable, Flexible, and Transparent Conducting Silver Nanowires/Polylactide Film with High Performance for Optoelectronic Devices. Polymers. 2020;12(3):604. https://doi.org/10.3390/polym12030604 Search in Google Scholar

Kale G, Auras R, Singh S, Narayan R, Biodegradability of polylactide bottles in real and simulated composting conditions Polymer Testing. 2007; 26 (8):1049-1061. https://doi.org/10.1016/j.polymertesting.2007.07.006. Search in Google Scholar

Abdelrazek Sh, Abou Taleb E, Mahmoud A, Hamouda T. Utilization of Polylactic Acid (PLA) in Textile Food Packaging: A Review". Egyptian Journal of Chemistry. 2021;65(3): 725 – 738. Search in Google Scholar

Sikorska W, Rydz J, Wolna-Stypka K, Musioł M, Adamus G, Kwiecień I, et al. Forensic Engineering of Advanced Polymeric Materials— Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers. 2017;9(12):257. https://doi.org/10.3390/polym9070257 Search in Google Scholar

Bergström JS, Hayman D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Annals of Biomedical Engineering. 2015;44(2):330–40. https://doi.org/10.1007/s10439-015-1455-8 Search in Google Scholar

Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. Basic Properties of Polylactic Acid Produced by the Direct Condensation Polymerization of Lactic Acid. Bulletin of the Chemical Society of Japan. 1995;68(8):2125–31. https://doi.org/10.1246/bcsj.68.2125 Search in Google Scholar

Julio César Velázquez-Infante, J. Gámez-Pérez, Adrian E, Santana OO, Carrasco F, M. Ll. Maspoch. Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different L-isomer content. 2012;127(4):2661–9. https://doi.org/10.1002/app.37546 Search in Google Scholar

Bai H, Deng S, Bai D, Zhang Q, Fu Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromolecular Rapid Communications. 2017;38(23):1700454. https://doi.org/doi:10.1002/marc.201700454 Search in Google Scholar

Su S, Kopitzky R, Tolga S, Kabasci S. Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers. 2019;11(7):1193. https://doi.org/10.3390/polym11071193 Search in Google Scholar

Piekarska K, Piorkowska E, Bojda J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polymer Testing. 2017; 62:203–209. https://doi.org/10.1016/j.polymertesting.2017.06.025 Search in Google Scholar

Dobrosielska M, Dobrucka R, Brząkalski D, Frydrych M, Kozera P, Wieczorek M, et al. Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites. Materials. 2022;15(10):3607. https://doi.org/10.3390/ma15103607 Search in Google Scholar

Pilla S, Gong S, O’Neill E, Yang L, Rowell RM. Polylactide-recycled wood fiber composites. Journal of Applied Polymer Science. 2009;111(1):37–47. https://doi.org/10.1002/app.28860 Search in Google Scholar

Mihai M, Ton-That MT. Novel bio-nanocomposite hybrids made from polylactide/nanoclay nanocomposites and short flax fibers. Journal of Thermoplastic Composite Materials. 2017;32(1):3–28. https://doi.org/10.1002/pen.23575 Search in Google Scholar

Sabzoi Nizamuddin, Jadhav A, Sundus Saeed Qureshi, Humair Ahmed Baloch, M. Minhaj Siddiqui, Nabisab Mujawar Mubarak, et al. Synthesis and characterization of polylactide/rice husk hydrochar composite. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-41960-1 Search in Google Scholar

Chanklom P, Kreetachat T, Chotigawin R, Suwannahong K. Photo-catalytic Oxidation of PLA/TiO2-Composite Films for Indoor Air Purification. ACS Omega. 2021;6(16):10629–36. https://doi.org/10.1021/acsomega.0c06194 Search in Google Scholar

Sztorch B, Pakuła D, Kustosz M, Romanczuk-Ruszuk E, Gabriel E, Przekop RE. The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO2 Composites Used in 3D Printing (FDM/FFF). Polymers. 2022;14(24):5493. https://doi.org/10.3390/polym14245493 Search in Google Scholar

Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. Journal of Polymer Research. 2022;29(10). https://doi.org/10.1007/s10965-022-03274-1 Search in Google Scholar

Browne MP, Pumera M. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications. 2019;55(58):8374–7. https://doi.org/10.1039/c9cc03774h Search in Google Scholar

Kjelgård KG, Wisland DT, Lande TS. 3D Printed Wideband Microwave Absorbers using Composite Graphite/PLA Filament. 48th European Microwave Conference (EuMC). Madrid Spain. 2018;859-862. https://doi.org/10.23919/EuMC.2018.8541699 Search in Google Scholar

Jiang D, Ning F. Fused Filament Fabrication of Biodegradable PLA/316L Composite Scaffolds: Effects of Metal Particle Content. Procedia Manufacturing. 2020; 48, 755–762. https://doi.org/10.1016/j.promfg.2020.05 Search in Google Scholar

Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D printed PLA-Stainless Steel Polymeric Composite through Fused Deposition Modeling based Additive Manufacturing Process for Biomedical Applications. Medical devices & sensors. 2020;00:e10080. https://doi.org/10.1002/mds3.10080 Search in Google Scholar

Mohammadizadeh M, Lu H, Fidan I, Tantawi K, Gupta A, Hasanov S, Zhang Z, Alifui-Segbaya F, Rennie A. Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion. Inventions. 2020;5(3):44. doi:10.3390/inventions5030044 Search in Google Scholar

Clarke AJ. Dickson A, Dowling DP. Fabrication and Performance of Continuous 316 Stainless Steel Fibre-Reinforced 3D-Printed PLA Composites. Polymers 2024; 16: (63). https://doi.org/10.3390/polym16010063 Search in Google Scholar

Clarke A, Dickson A, Dowling DP. Additive manufacturing of reinforced polymer composites with stainless steel fibre. Proceedings of the 38th International Manufacturing Conference (IMC38) 2022-08-30. University College Dublin. School of Mechanical and Materials Engineering; Search in Google Scholar

Pušnik Črešnar K, Aulova A, Bikiaris DN, Lambropoulou D, Kuzmič K, Fras Zemljič L. Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films. Molecules. 2021;26(14):4161. https://doi.org/10.3390/molecules26144161 Search in Google Scholar

Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11): 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014 Search in Google Scholar

Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing. 2010;41(7):806–19. https://doi.org/10.1016/j.compositesa.2010.03.005 Search in Google Scholar

Brząkalski D, Sztorch B, Frydrych M, Pakuła D, Dydek K, Kozera R, et al. Limonene Derivative of Spherosilicate as a Polylactide Modifier for Applications in 3D Printing Technology. Molecules. 2020;25(24):5882. https://doi.org/10.3390/molecules25245882 Search in Google Scholar

Shen C, Han Y, Wang B, Tang J, Chen H, Lin,Q. Ocular biocompatibility evaluation of POSS nanomaterials for biomedical material applications. RSC Advances. 2015;5(66):53782–53788. https://doi.org/10.1039/c5ra08668j Search in Google Scholar

Sztorch B, Brząkalski D, Pakuła D, Frydrych M, Špitalský Z, Przekop RE. Natural and Synthetic Polymer Fillers for Applications in 3D Printing——FDM Technology Area. Solids. 2022;3(3):508-548. https://doi.org/10.3390/solids3030034 Search in Google Scholar

Maciejewski H, Karasiewicz J, Marciniec B. Efektywna synteza fluorofunkcyjnych (poli)siloksanów. Polimery. 2012;57,6:449–55. Search in Google Scholar

Dumitriu AC, Cazacu M, Bargan A, Balan M, Vornicu N, Varganici CD, et al. Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. Journal of Organometallic Chemistry. 2015;799-800:195–200. https://doi.org/10.1016/j.jorganchem.2015.09.025 Search in Google Scholar

Feher FJ, Wyndham KD, Soulivong D, Nguyen F. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12). Journal of the Chemical Society. Dalton Transactions.1999;(9):1491–8. https://doi.org/10.1039/a807302c Search in Google Scholar

Pakuła D, Przekop R, Brząkalski D, Frydrych M, Sztorch B, Marciniec B. Sulfur-Containing Silsesquioxane Derivatives Obtained by the Thiol-ene Reaction: Synthesis and Thermal Degradation. ChemPlusChem. 2022;87:e202200099. https://doi.org/10.1002/cplu.202200099 Search in Google Scholar

Pakuła D, Sztorch B, Romańczuk-Ruszuk E, Marciniec B, Przekop RE, High impact polylactide based on organosilicon nucleation agent. Chinese Journal of Polymer Science. 2024;42,787–797. https://doi.org/10.1007/s10118-024-3095-7 Search in Google Scholar

Kuentz L, Salem A, Singh M, Halbig MC, SalemJA. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements. National Aeronautics and Space Administration, https://ntrs.nasa.gov/citations/20160010284 Search in Google Scholar

Safandowska M, Różański A, Gałȩski A. Plasticization of Polylactide after Solidification: An Effectiveness and Utilization for Correct Interpretation of Thermal Properties. Polymers. 2020;12(3):561. https://doi.org/10.3390/polym12030561 Search in Google Scholar

Sztorch B, Romańczuk-Ruszuk E, Gabriel E, Pakuła D, Kozera R, Przekop RE. Metal and metal oxide particles as modifiers for effective layer melting and Z-axis strength in 3D printing. Polymer. 2024;294:126684. https://doi.org/10.1016/j.polymer.2024.126684 Search in Google Scholar

Klecker C, Nair LS. Matrix Chemistry Controlling Stem Cell Behavior. Biology and Engineering of Stem Cell Niches. 2017;195–213. https://doi.org/10.1016/b978-0-12-802734-9.00013-5 Search in Google Scholar

Karasiewicz J, Dutkiewicz A, Maciejewski H. Fluorokarbofunkcyjne silany jako prekursory materiałów silnie hydrofobowych. Chemik. 2014;68(11): 945–956. Search in Google Scholar

Weishuai Di, Wang X, Zhou Y, Mei Y, Wang W, Cao Y. Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level. Chinese Phys. Lett. 2022;39(3):038701. https://doi.org/10.1088/0256-307X/39/3/038701 Search in Google Scholar