This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. 2010; 101(22):8493–501. https://doi.org/10.1016/j.biortech.2010.05.092Search in Google Scholar
Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11):1504–42. https://doi.org/10.1016/j.progpolymsci.2013.05.014Search in Google Scholar
Anderson K, Schreck K, Hillmyer M. Toughening Polylactide. Polymer Reviews. 2008; 48(1):85–108. https://doi.org/10.1080/15583720701834216Search in Google Scholar
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012Search in Google Scholar
Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, et al. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing. 2014; 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007Search in Google Scholar
Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, et al. A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging, International Journal of Biological Macromolecules. 2023; 234:123715. https://doi.org/10.1016/j.ijbiomac.2023.123715Search in Google Scholar
Claudio L. Waste Couture: Environmental Impact of the Clothing Industry. Environmental health perspectives. 2007;115(9):448–54. https://doi.org/10.1289/ehp.115-a449Search in Google Scholar
Wang J, Yu J, Bai D, Li Z, Liu H, Li Y, et al. Biodegradable, Flexible, and Transparent Conducting Silver Nanowires/Polylactide Film with High Performance for Optoelectronic Devices. Polymers. 2020;12(3):604. https://doi.org/10.3390/polym12030604Search in Google Scholar
Kale G, Auras R, Singh S, Narayan R, Biodegradability of polylactide bottles in real and simulated composting conditions Polymer Testing. 2007; 26 (8):1049-1061. https://doi.org/10.1016/j.polymertesting.2007.07.006.Search in Google Scholar
Abdelrazek Sh, Abou Taleb E, Mahmoud A, Hamouda T. Utilization of Polylactic Acid (PLA) in Textile Food Packaging: A Review". Egyptian Journal of Chemistry. 2021;65(3): 725 – 738.Search in Google Scholar
Sikorska W, Rydz J, Wolna-Stypka K, Musioł M, Adamus G, Kwiecień I, et al. Forensic Engineering of Advanced Polymeric Materials— Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers. 2017;9(12):257. https://doi.org/10.3390/polym9070257Search in Google Scholar
Bergström JS, Hayman D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Annals of Biomedical Engineering. 2015;44(2):330–40. https://doi.org/10.1007/s10439-015-1455-8Search in Google Scholar
Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. Basic Properties of Polylactic Acid Produced by the Direct Condensation Polymerization of Lactic Acid. Bulletin of the Chemical Society of Japan. 1995;68(8):2125–31. https://doi.org/10.1246/bcsj.68.2125Search in Google Scholar
Julio César Velázquez-Infante, J. Gámez-Pérez, Adrian E, Santana OO, Carrasco F, M. Ll. Maspoch. Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different L-isomer content. 2012;127(4):2661–9. https://doi.org/10.1002/app.37546Search in Google Scholar
Bai H, Deng S, Bai D, Zhang Q, Fu Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromolecular Rapid Communications. 2017;38(23):1700454. https://doi.org/doi:10.1002/marc.201700454Search in Google Scholar
Su S, Kopitzky R, Tolga S, Kabasci S. Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers. 2019;11(7):1193. https://doi.org/10.3390/polym11071193Search in Google Scholar
Piekarska K, Piorkowska E, Bojda J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polymer Testing. 2017; 62:203–209. https://doi.org/10.1016/j.polymertesting.2017.06.025Search in Google Scholar
Dobrosielska M, Dobrucka R, Brząkalski D, Frydrych M, Kozera P, Wieczorek M, et al. Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites. Materials. 2022;15(10):3607. https://doi.org/10.3390/ma15103607Search in Google Scholar
Pilla S, Gong S, O’Neill E, Yang L, Rowell RM. Polylactide-recycled wood fiber composites. Journal of Applied Polymer Science. 2009;111(1):37–47. https://doi.org/10.1002/app.28860Search in Google Scholar
Mihai M, Ton-That MT. Novel bio-nanocomposite hybrids made from polylactide/nanoclay nanocomposites and short flax fibers. Journal of Thermoplastic Composite Materials. 2017;32(1):3–28. https://doi.org/10.1002/pen.23575Search in Google Scholar
Sabzoi Nizamuddin, Jadhav A, Sundus Saeed Qureshi, Humair Ahmed Baloch, M. Minhaj Siddiqui, Nabisab Mujawar Mubarak, et al. Synthesis and characterization of polylactide/rice husk hydrochar composite. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-41960-1Search in Google Scholar
Chanklom P, Kreetachat T, Chotigawin R, Suwannahong K. Photo-catalytic Oxidation of PLA/TiO2-Composite Films for Indoor Air Purification. ACS Omega. 2021;6(16):10629–36. https://doi.org/10.1021/acsomega.0c06194Search in Google Scholar
Sztorch B, Pakuła D, Kustosz M, Romanczuk-Ruszuk E, Gabriel E, Przekop RE. The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO2 Composites Used in 3D Printing (FDM/FFF). Polymers. 2022;14(24):5493. https://doi.org/10.3390/polym14245493Search in Google Scholar
Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. Journal of Polymer Research. 2022;29(10). https://doi.org/10.1007/s10965-022-03274-1Search in Google Scholar
Browne MP, Pumera M. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications. 2019;55(58):8374–7. https://doi.org/10.1039/c9cc03774hSearch in Google Scholar
Kjelgård KG, Wisland DT, Lande TS. 3D Printed Wideband Microwave Absorbers using Composite Graphite/PLA Filament. 48th European Microwave Conference (EuMC). Madrid Spain. 2018;859-862. https://doi.org/10.23919/EuMC.2018.8541699Search in Google Scholar
Jiang D, Ning F. Fused Filament Fabrication of Biodegradable PLA/316L Composite Scaffolds: Effects of Metal Particle Content. Procedia Manufacturing. 2020; 48, 755–762. https://doi.org/10.1016/j.promfg.2020.05Search in Google Scholar
Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D printed PLA-Stainless Steel Polymeric Composite through Fused Deposition Modeling based Additive Manufacturing Process for Biomedical Applications. Medical devices & sensors. 2020;00:e10080. https://doi.org/10.1002/mds3.10080Search in Google Scholar
Mohammadizadeh M, Lu H, Fidan I, Tantawi K, Gupta A, Hasanov S, Zhang Z, Alifui-Segbaya F, Rennie A. Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion. Inventions. 2020;5(3):44. doi:10.3390/inventions5030044Search in Google Scholar
Clarke AJ. Dickson A, Dowling DP. Fabrication and Performance of Continuous 316 Stainless Steel Fibre-Reinforced 3D-Printed PLA Composites. Polymers 2024; 16: (63). https://doi.org/10.3390/polym16010063Search in Google Scholar
Clarke A, Dickson A, Dowling DP. Additive manufacturing of reinforced polymer composites with stainless steel fibre. Proceedings of the 38th International Manufacturing Conference (IMC38) 2022-08-30. University College Dublin. School of Mechanical and Materials Engineering;Search in Google Scholar
Pušnik Črešnar K, Aulova A, Bikiaris DN, Lambropoulou D, Kuzmič K, Fras Zemljič L. Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films. Molecules. 2021;26(14):4161. https://doi.org/10.3390/molecules26144161Search in Google Scholar
Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11): 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014Search in Google Scholar
Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing. 2010;41(7):806–19. https://doi.org/10.1016/j.compositesa.2010.03.005Search in Google Scholar
Brząkalski D, Sztorch B, Frydrych M, Pakuła D, Dydek K, Kozera R, et al. Limonene Derivative of Spherosilicate as a Polylactide Modifier for Applications in 3D Printing Technology. Molecules. 2020;25(24):5882. https://doi.org/10.3390/molecules25245882Search in Google Scholar
Shen C, Han Y, Wang B, Tang J, Chen H, Lin,Q. Ocular biocompatibility evaluation of POSS nanomaterials for biomedical material applications. RSC Advances. 2015;5(66):53782–53788. https://doi.org/10.1039/c5ra08668jSearch in Google Scholar
Sztorch B, Brząkalski D, Pakuła D, Frydrych M, Špitalský Z, Przekop RE. Natural and Synthetic Polymer Fillers for Applications in 3D Printing——FDM Technology Area. Solids. 2022;3(3):508-548. https://doi.org/10.3390/solids3030034Search in Google Scholar
Maciejewski H, Karasiewicz J, Marciniec B. Efektywna synteza fluorofunkcyjnych (poli)siloksanów. Polimery. 2012;57,6:449–55.Search in Google Scholar
Dumitriu AC, Cazacu M, Bargan A, Balan M, Vornicu N, Varganici CD, et al. Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. Journal of Organometallic Chemistry. 2015;799-800:195–200. https://doi.org/10.1016/j.jorganchem.2015.09.025Search in Google Scholar
Feher FJ, Wyndham KD, Soulivong D, Nguyen F. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12). Journal of the Chemical Society. Dalton Transactions.1999;(9):1491–8. https://doi.org/10.1039/a807302cSearch in Google Scholar
Pakuła D, Przekop R, Brząkalski D, Frydrych M, Sztorch B, Marciniec B. Sulfur-Containing Silsesquioxane Derivatives Obtained by the Thiol-ene Reaction: Synthesis and Thermal Degradation. ChemPlusChem. 2022;87:e202200099. https://doi.org/10.1002/cplu.202200099Search in Google Scholar
Pakuła D, Sztorch B, Romańczuk-Ruszuk E, Marciniec B, Przekop RE, High impact polylactide based on organosilicon nucleation agent. Chinese Journal of Polymer Science. 2024;42,787–797. https://doi.org/10.1007/s10118-024-3095-7Search in Google Scholar
Kuentz L, Salem A, Singh M, Halbig MC, SalemJA. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements. National Aeronautics and Space Administration, https://ntrs.nasa.gov/citations/20160010284Search in Google Scholar
Safandowska M, Różański A, Gałȩski A. Plasticization of Polylactide after Solidification: An Effectiveness and Utilization for Correct Interpretation of Thermal Properties. Polymers. 2020;12(3):561. https://doi.org/10.3390/polym12030561Search in Google Scholar
Sztorch B, Romańczuk-Ruszuk E, Gabriel E, Pakuła D, Kozera R, Przekop RE. Metal and metal oxide particles as modifiers for effective layer melting and Z-axis strength in 3D printing. Polymer. 2024;294:126684. https://doi.org/10.1016/j.polymer.2024.126684Search in Google Scholar
Klecker C, Nair LS. Matrix Chemistry Controlling Stem Cell Behavior. Biology and Engineering of Stem Cell Niches. 2017;195–213. https://doi.org/10.1016/b978-0-12-802734-9.00013-5Search in Google Scholar
Karasiewicz J, Dutkiewicz A, Maciejewski H. Fluorokarbofunkcyjne silany jako prekursory materiałów silnie hydrofobowych. Chemik. 2014;68(11): 945–956.Search in Google Scholar
Weishuai Di, Wang X, Zhou Y, Mei Y, Wang W, Cao Y. Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level. Chinese Phys. Lett. 2022;39(3):038701. https://doi.org/10.1088/0256-307X/39/3/038701Search in Google Scholar