This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5): 363-408. Available from: https://doi:10.1615/critrevbiomedeng.v40.i5.10Search in Google Scholar
Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128-154. Available from: https://doi:10.1007/s40883-018-0072-0Search in Google Scholar
Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V, Bechelany M. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials science & engineering. C. Materials for biological applications. 2020;110:110595. Available from: https://doi:10.1016/j.msec.2019.110595Search in Google Scholar
Tang D., Tare RS., Yang L.Y., Williams DF., Ou K.L.& Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016; 83: 363-382.Search in Google Scholar
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. Available from: https://doi:10.1016/j.biomaterials.2018.07.017Search in Google Scholar
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;4:3429527. Available from: https://doi:10.1155/2019/3429527Search in Google Scholar
Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. EXPRESS Polym Lett. 2015;9(5):435-455. Available from: https://doi:10.3144/expresspolymlett.2015.42Search in Google Scholar
Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887-894. Available from: https://doi:10.1002/jbm.a.36289Search in Google Scholar
Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater. 2011;4(3):451-460. Available from: https://doi:10.1016/j.jmbbm.2010.12.006Search in Google Scholar
Al-Itry R. Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil. 2012;97(10):1898-1914. Available from: https://doi:10.1016/j.polymdegradstab.2012.06.028Search in Google Scholar
Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10(9):4033-4065. Available from: https://doi:10.3390/ijms10094033Search in Google Scholar
Shick TM, Kadir AZA, Ngadiman NHA, Ma’aram A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J Bioact Compat Polym. 2019; 34(6): 415-435. Available from: https://doi:10.1177/0883911519877426.Search in Google Scholar
Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019;12(4):568. Available from: https://doi:10.3390/ma12040568Search in Google Scholar
Caballero DE, Montini-Ballarin F, Gimenez JM, & Urquiza SA. Multiscale constitutive model with progressive recruitment for nano-fibrous scaffolds. Journal of the Mechanical Behavior of Bi-omedical Materials. 2019;98:225-234.Search in Google Scholar
Farto-Vaamonde X, Auriemma G. Aquino RP, Concheiro A, & Alvarez-Lorenzo C. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2019;141:100–110. Available from: https://doi.org/10.1016/j.ejpb.2019.05.018Search in Google Scholar
Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of poly-mer-based gradient scaffolds Acta Biomater. 2017;56:3–13.Search in Google Scholar
Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds PLoS ONE. 2018;13. Available from: https://doi.org/10.1371/journal.pone.0195291Search in Google Scholar
Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV & Dalton PD. 3D printing strategies for peripheral nerve re-generation. Biofabrication. 2018;10(3):032001. Available from: https://doi.org/10.1088/1758-5090/aaaf50Search in Google Scholar
Ghosh U, Ning S, Wang Y, & Kong YL. Addressing un-met clinical needs with 3D printing technologies. Advanced healthcare materials, 2018;7(17):1800417.Search in Google Scholar
Czyzewski P, Marciniak D, Nowinka B, Borowiak M, Bielinski M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers: MDPI. 2022;14:356. Available from: https://doi.org/10.3390/polym14020356Search in Google Scholar
Dai Z, Ronholm J, Tian Y, Stehi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng. 2016;7:2041731416648810. Available from: https://doi:10.1177/2041731416648810Search in Google Scholar
Han QF, Wang ZW, Tang CY, Chen L, Tsui CP, Law WC. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material. J Mech Behav Biomed Mater. 2017;71:262-270. Available from: https://doi:10.1016/j.jmbbm.2017.03.032Search in Google Scholar
Vieira AC, Guedes RM, Marques AT, Tita V. Material model proposal for the design of biodegradable plastic structures. In: Proceedings of the 10th World Congress on Computational Mechanics. Blucher: São Paulo. 2014; 2512-2529. Available from: https://doi:10.5151/meceng-wccm2012-18893Search in Google Scholar
Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. Available from: https://doi:10.3389/fbioe.2019.00259Search in Google Scholar
Tew GN, Bhatia SR. PLA–PEO–PLA hydrogels and their mechanical properties. In: Bhatia SK (ed.). Engineering Biomaterials for Regenerative Medicine. Springer: New York. 2012; 127-140. Available from: https://doi:10.1007/978-1-4614-1080-5_5Search in Google Scholar
Da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018; 340: 9-14. Available from: https://doi:10.1016/j.cej.2018.01.010Search in Google Scholar
Guo Z, Yang C, Zhou Z, Chen S, Li F. Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv. 2017; 7(54): 34063-34070. Available from: https://doi:10.1039/C7RA03574HSearch in Google Scholar
Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K, Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP. 2016;46:33-38. Available from: https://doi.org/10.1016/j.procir.2015.07.025Search in Google Scholar
Karimipour-Fard P, Pop-Iliev R, Jones-Taggart H, Rizvi G. Design of 3D scaffold geometries for optimal biodegradation of poly(lactic acid)-based bone tissue. AIP Conference Proceedings 10 January 2020; 2205(1):020062. Available from: https://doi.org/10.1063/1.5142977Search in Google Scholar
Jiang D, Ning F. Fused filament fabrication of biode-gradable PLA/316L composite scaffolds: Effects of metal particle content. Procedia Manufacturing. 2020;48:755-762.Search in Google Scholar
Zhu X, Zhong T, Huang R, Wan A. Preparation of hy-drophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Journal of biomaterials science. Polymer edi-tion, 2015;26(17):1286-1296. Available from: https://doi.org/10.1080/09205063.2015.1088125Search in Google Scholar
Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iranian Polymer Journal, 2023, 32:1209–1227. Available from: https://doi.org/10.1007/s13726-023-01191-8Search in Google Scholar