Open Access

Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration

, , , ,  and   
Oct 30, 2024

Cite
Download Cover

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5): 363-408. Available from: https://doi:10.1615/critrevbiomedeng.v40.i5.10 Search in Google Scholar

Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128-154. Available from: https://doi:10.1007/s40883-018-0072-0 Search in Google Scholar

Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V, Bechelany M. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials science & engineering. C. Materials for biological applications. 2020;110:110595. Available from: https://doi:10.1016/j.msec.2019.110595 Search in Google Scholar

Tang D., Tare RS., Yang L.Y., Williams DF., Ou K.L.& Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016; 83: 363-382. Search in Google Scholar

Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. Available from: https://doi:10.1016/j.biomaterials.2018.07.017 Search in Google Scholar

Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;4:3429527. Available from: https://doi:10.1155/2019/3429527 Search in Google Scholar

Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. EXPRESS Polym Lett. 2015;9(5):435-455. Available from: https://doi:10.3144/expresspolymlett.2015.42 Search in Google Scholar

Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887-894. Available from: https://doi:10.1002/jbm.a.36289 Search in Google Scholar

Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater. 2011;4(3):451-460. Available from: https://doi:10.1016/j.jmbbm.2010.12.006 Search in Google Scholar

Al-Itry R. Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil. 2012;97(10):1898-1914. Available from: https://doi:10.1016/j.polymdegradstab.2012.06.028 Search in Google Scholar

Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10(9):4033-4065. Available from: https://doi:10.3390/ijms10094033 Search in Google Scholar

Shick TM, Kadir AZA, Ngadiman NHA, Ma’aram A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J Bioact Compat Polym. 2019; 34(6): 415-435. Available from: https://doi:10.1177/0883911519877426. Search in Google Scholar

Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019;12(4):568. Available from: https://doi:10.3390/ma12040568 Search in Google Scholar

Caballero DE, Montini-Ballarin F, Gimenez JM, & Urquiza SA. Multiscale constitutive model with progressive recruitment for nano-fibrous scaffolds. Journal of the Mechanical Behavior of Bi-omedical Materials. 2019;98:225-234. Search in Google Scholar

Farto-Vaamonde X, Auriemma G. Aquino RP, Concheiro A, & Alvarez-Lorenzo C. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2019;141:100–110. Available from: https://doi.org/10.1016/j.ejpb.2019.05.018 Search in Google Scholar

Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of poly-mer-based gradient scaffolds Acta Biomater. 2017;56:3–13. Search in Google Scholar

Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds PLoS ONE. 2018;13. Available from: https://doi.org/10.1371/journal.pone.0195291 Search in Google Scholar

Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV & Dalton PD. 3D printing strategies for peripheral nerve re-generation. Biofabrication. 2018;10(3):032001. Available from: https://doi.org/10.1088/1758-5090/aaaf50 Search in Google Scholar

Ghosh U, Ning S, Wang Y, & Kong YL. Addressing un-met clinical needs with 3D printing technologies. Advanced healthcare materials, 2018;7(17):1800417. Search in Google Scholar

Czyzewski P, Marciniak D, Nowinka B, Borowiak M, Bielinski M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers: MDPI. 2022;14:356. Available from: https://doi.org/10.3390/polym14020356 Search in Google Scholar

Dai Z, Ronholm J, Tian Y, Stehi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng. 2016;7:2041731416648810. Available from: https://doi:10.1177/2041731416648810 Search in Google Scholar

Han QF, Wang ZW, Tang CY, Chen L, Tsui CP, Law WC. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material. J Mech Behav Biomed Mater. 2017;71:262-270. Available from: https://doi:10.1016/j.jmbbm.2017.03.032 Search in Google Scholar

Vieira AC, Guedes RM, Marques AT, Tita V. Material model proposal for the design of biodegradable plastic structures. In: Proceedings of the 10th World Congress on Computational Mechanics. Blucher: São Paulo. 2014; 2512-2529. Available from: https://doi:10.5151/meceng-wccm2012-18893 Search in Google Scholar

Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. Available from: https://doi:10.3389/fbioe.2019.00259 Search in Google Scholar

Tew GN, Bhatia SR. PLA–PEO–PLA hydrogels and their mechanical properties. In: Bhatia SK (ed.). Engineering Biomaterials for Regenerative Medicine. Springer: New York. 2012; 127-140. Available from: https://doi:10.1007/978-1-4614-1080-5_5 Search in Google Scholar

Da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018; 340: 9-14. Available from: https://doi:10.1016/j.cej.2018.01.010 Search in Google Scholar

Guo Z, Yang C, Zhou Z, Chen S, Li F. Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv. 2017; 7(54): 34063-34070. Available from: https://doi:10.1039/C7RA03574H Search in Google Scholar

Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K, Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP. 2016;46:33-38. Available from: https://doi.org/10.1016/j.procir.2015.07.025 Search in Google Scholar

Karimipour-Fard P, Pop-Iliev R, Jones-Taggart H, Rizvi G. Design of 3D scaffold geometries for optimal biodegradation of poly(lactic acid)-based bone tissue. AIP Conference Proceedings 10 January 2020; 2205(1):020062. Available from: https://doi.org/10.1063/1.5142977 Search in Google Scholar

Jiang D, Ning F. Fused filament fabrication of biode-gradable PLA/316L composite scaffolds: Effects of metal particle content. Procedia Manufacturing. 2020;48:755-762. Search in Google Scholar

Zhu X, Zhong T, Huang R, Wan A. Preparation of hy-drophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Journal of biomaterials science. Polymer edi-tion, 2015;26(17):1286-1296. Available from: https://doi.org/10.1080/09205063.2015.1088125 Search in Google Scholar

Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iranian Polymer Journal, 2023, 32:1209–1227. Available from: https://doi.org/10.1007/s13726-023-01191-8 Search in Google Scholar