Open Access

Novel Integral Transform Treating Some Ψ-Fractional Derivative Equations

,  and   
Aug 01, 2024

Cite
Download Cover

Chu Y-M, Rashid S, Karim S, Khalid A, Elagan S-K. Deterministic-stochastic analysis of fractional differential equations malnutrition model with random perturbations and crossover effects. Sci Rep. 2023;13(1):14824. https://doi:10.1038/s41598-023-41861-4 Search in Google Scholar

Al-Qurashi M, Asif Q. U-A, Chu Y-M, Rashid S, Elagan SK. Complexity analysis and discrete fractional difference implementation of the Hindmarsh–Rose neuron system. Results in Physics. 2023;51 106627:2211-3797. https://doi.org/10.1016/j.rinp.2023.106627 Search in Google Scholar

Alsharidi AK, Rashid S, Elagan SK. Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis. AIMS Mathematics. 2023;8(8):19097-19120. https://doi.10.3934/math.2023975 Search in Google Scholar

Kanan M, Ullah H, Raja M-A. Z, Fiza M, Ullah H, Shoaib M., Akgül A, Asad J. Intelligent computing paradigm for second-grade fluid in a rotating frame in a fractal porous medium. Fractals. 2023;31(08): 2340175. https://doi.org/10.1142/S0218348X23401758 Search in Google Scholar

Rashid S, Noorb MA, Noor K. I. Caputo fractional derivatives and inequalities via preinvex stochastic processes, Published by Faculty of Sciences and Mathematics. University of Nis. Serbia. Filomat. 2023;37(19):6569–6584. https://doi.org/10.2298/FIL2319569R Search in Google Scholar

Li W, Farooq U, Waqas H, Alharthi AM, Fatima N, Hassan AM, Muhammad T, Akgül A. Numerical simulations of Darcy-forchheimer flow of radiative hybrid nanofluid with Lobatto-IIIa scheme configured by a stretching surface. Case Studies in Thermal Engineering. 2023;49:103364:214-157X. https://doi.org/10.1016/j.csite.2023.103364 Search in Google Scholar

Faridi WA, Abu Bakar M, Akgül A, Abd El-Rahman M, El Din SM. Exact fractional soliton solutions of thin-film ferroelectric matrial equation by analytical approaches. Alexandria Engineering Journal. 2023;78:483-497. https://doi.org/10.1016/j.aej.2023.07.049 Search in Google Scholar

Ashraf R, Hussain S, Ashraf F, Akgül A, El Din SM. The extended Fan’s sub-equation method and its application to nonlinear Schrödinger equation with saturable nonlinearity. Results in Physics. 2023;52:106755 https://doi.org/10.1016/j.rinp.2023.106755 Search in Google Scholar

Khan SA, Yasmin S, Waqas H, Az-Zo’bi EA, Alhushaybari A, Akgül A, Hassan A. M, Imran M. Entropy optimized Ferro-copper/blood based nanofluid flow between double stretchable disks: Application to brain dynamic. Alexandria Engineering Journal. 2023;79:296-307. https://doi.org/10.1016/j.aej.2023.08.017 Search in Google Scholar

Faridi WA, Abu Bakar M, Myrzakulova Z, Myrzakulov R, Akgül A, El Din S. M. The formation of solitary wave solutions and their propagation for Kuralay equation. Results in Physics. 2023;52:106774. https://doi.org/10.1016/j.rinp.2023.106774 Search in Google Scholar

Rashid S, Karim S, Akgül A, Bariq A, Elagan SK. Novel insights for a nonlinear deterministic-stochastic class of fractional-order Lassa fever model with varying kernels. Sci Rep 2023;13:15320. https://doi.org/10.1038/s41598-023-42106-0 Search in Google Scholar

Zhou S-S, Rashid S, Set E, Garba Ahmad A, Hamed YS. On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics. 2021;6(9):9154–9176. https://doi.org/1010.3934/math.2021532 Search in Google Scholar

Rashid S, Abouelmagd E. I, Sultana S, Chu Y-M. New developments in weighted n-fold type inequalities via discrete generalized ℏ̂ - proportional fractional operators. Fractals. 2022; 30(02):2240056. https://doi.org/10.1142/S0218348X22400564 Search in Google Scholar

Rashid S, Abouelmagd E. I, Khalid A, Farooq FB, Chu Y-M. Some recent developments on dynamical ℏ̂ -discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals. 2022; 30 (02):2240110. https://doi.org/10.1142/S0218348X22401107 Search in Google Scholar

Rashid S, Sultana S, Hammouch Z, Jarad F, Hamed YS. Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ̂ -discrete Mittag-Leffler kernels and application. Chaos. Solitons & Fractals. 2021;151:111204. https://doi.org/10.1016/j.chaos.2021.111204 Search in Google Scholar

Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 2016;20(2):763--769. http://dx.doi.org/10.2298/TSCI160111018A Search in Google Scholar

Chu Y-M, Rashid S, Asif Q. U-A, Abdalbagi M. On configuring new choatic behaviours for a variable fractional-order memristor-based circuit in terms of Mittag-Leffler kernel. Results in Physics. 2023;53: 106939. https://doi.org/10.1016/j.rinp.2023.106939 Search in Google Scholar

Rashid S, Khalid A, Bazighifan O, Oros G.I. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics. 2021;9:1753. https://doi.org/10.3390/math9151753 Search in Google Scholar

Érdlyi A. An integral equation involving Legendre functions, J. Soc. Indust. Appl. Math. 1964;12(1):15-30. https://doi.org/10.1137/0112002 Search in Google Scholar

OSLR TJ. Leibniz rule for fractional derivatives and an application to infinite series. SlAM J. Appl. Math. 1970;18(3):658--674. https://doi.org/10.1137/0118059 Search in Google Scholar

Almeida R. A caputo fractional derivative of a function with respect to another function. Communications in Nonlinear Science and Numerical Simulation. 2017;44:460--481. https://doi.org/10.1016/j.cnsns.2016.09.006 Search in Google Scholar

Almeida R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mountain J. Math. 2019;49(8):2459--2493. https://doi.org/10.1216/RMJ-2019-49-8-2459 Search in Google Scholar

Sousa JV da C, Oliveira EC de. On the Ψ-Hilfer Fractional Derivative. Commun. Nonlinear Sci. Numer. Simul. 2018;60:72-91. https://doi.org/10.1016/j.cnsns.2018.01.005 Search in Google Scholar

Yang X-J. General fractional derivatives: theory, methods and applications. CRC Press. New York 2019. https://doi.org/10.1201/9780429284083 Search in Google Scholar

Jarad F, Abdeljawad T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. 2020;13(3):709–722. https://doi.org/10.3934/dcdss.2020039 Search in Google Scholar

Singh Y, Gill V, Kundu S, Kumar D. On the Elzaki transform and its application in fractional free electron laser equation. Acta Univ. Sapientiae Mathem. 2019;11(2):419--429. https://doi.org/10.2478/ausm-2019-0030 Search in Google Scholar

Elzaki TM. The New Integral Transform (Elzaki Transform) fundamental properties investigations and applications. GJPAM. 2011;7(1):57—64. Search in Google Scholar

Almeida R, Malinowska AB, Odzijewicz T. An extension of the fractional gronwall inequality, in Conference on Non-Integer Order Calculus and Its Applications. Springer. 2018:20-28. https://doi.org/10.1007/978-3-030-17344-9_2 Search in Google Scholar

Ali A, Minamoto T. A new numerical technique for investigating boundary value problems with Ψ-Caputo fractional operator. Journal of Applied Analysis & Computation. 2023;13(1):275--297. https://doi.org/10.11948/20220062 Search in Google Scholar

Sousa JV da C, Oliveira E C de. On the Ψ-fractional integral and applications. Comp. Appl. Math. 2019;38(4). https://doi.org/10.1007/s40314-019-0774-z Search in Google Scholar

Bulut H, Baskonus HM, Bin Muhammad Belgacem F. The Analytical Solutions of Some Fractional Ordinary Differential Equations By Sumudu Transform Method. Abs. Appl. Anal. 2013;2013(6):203875. https://doi.org/10.1155/2013/203875 Search in Google Scholar

Jafari H. A new general integral transform for solving integral equations. J Adv Res. 2021;32:133--138. https://doi.org/10.1016/j.jare.2020.08.016 Search in Google Scholar

Elzaki MT, Chamekh M. Solving nonlinear fractional differential equations using a new decomposition method. Universal Journal of Applied Mathematics & Computation. 2018;6:27-35. Search in Google Scholar

Fahad HM, Ur Rehman M, Fernandez A. On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 2021;1-20. https://doi.org/10.1002/mma.7772 Search in Google Scholar

Prabhakar TR. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971;19:7-15. Search in Google Scholar

Pang D, Jiang W, Niazi AUK. Fractional derivatives of the generalized Mittag-Leffler functions. Adv. Differ. Equ. 2018;2018:415. https://doi.org/10.1186/s13662-018-1855-9 Search in Google Scholar

Harikrishnan S, Shah K, Baleanu D, et al. Note on the solution of random differential equations via Ψ-Hilfer fractional derivative. Adv Differ Equ. 2018;2018:224. https://doi.org/10.1186/s13662-018-1678-8 Search in Google Scholar

Li C, Zeng FH. Numerical methods for fractional calculus. Chapman and Hall/CRC 2015. https://doi.org/10.1201/b18503 Search in Google Scholar