This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Phyo AM, Hirohito K, Mikihito H. Fatigue-performance improvement of patch-plate welding via PWHT with induction heating. Journal of Constructional Steel Research. 2019;160(3):280–288. https://doi:10.1016/j.jcsr.2019.05.047Search in Google Scholar
D’Aniello M, Portioli F, Fiorino L, Landolfo R. Experimental investigation on shear behaviour of riveted connections in steel structures. Eng. Struct. 2011; 33(2):516–531. https://doi:10.1016/j.engstruct.2010.11.010Search in Google Scholar
Ishikawa T, Ikeda T. Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts. International Journal of Steel Structures. 2018;18:1410–1419. https://doi.org/10.1007/s13296-018-0149-0Search in Google Scholar
Chen ZY, Gu XL, Zhao XL, Ghafoori E. Fatigue Tests on Fe-SMA Strengthened Steel Plates Considering Thermal Effects. Publication: Journal of Structural Engineering. 2022;149(3). https://doi.org/10.1061/JSENDH.STENG-11694Search in Google Scholar
Ghafoori E, Dahaghin H, Diao Ch, Pichler N, Li L, Ding J, Ganguly S, Williams S. Metal 3D-Printing for Repair of Steel Structures. Proceedings in civil engineering. 2022;796-801. https://doi.org/10.1002/cepa.2285.Search in Google Scholar
Tolga D, Costas S. Recent developments in advanced aircraft aluminium alloys. Materials & Design. 2014;56(1):862–871. https://doi:10.1016/j.matdes.2013.12.002.Search in Google Scholar
Nayak NV. Composite materials in aerospace design. Mater. Des. 2014; 4(9): 1–10.Search in Google Scholar
Baker A. Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 1999;47(1):431-443. https://doi:10.1016/S0263-8223(00)00011-8Search in Google Scholar
Baker A, Rose A, L. R. F and Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structur. 1ère ed. Netherlands. Elsevier Science. 2002. ISBN: 0-08-042699-9.Search in Google Scholar
Hosseini-Toudeshky H, Sadeghi G, Daghyani HR. Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches. 2005; 71(3-4): 401–406. http://doi:10.1016/j.compstruct.2005.09.032.Search in Google Scholar
Khalili SMR, Ghadjar R, Sadeghinia M, Mittal RK. An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Composite Structures.2008; 489(2): 270-274. http://doi:10.1016/j.compstruct.2008.07.032Search in Google Scholar
Maleki HN, Chakherlou TN. Investigation of the Effect of Bonded Composite Patch on the Mixed-Mode Fracture Strength and Stress Intensity Factors for an Edge Crack in Aluminum Alloy 2024-T3 Plates. Journal of Reinforced Plastics and Composites.2017; 36(15): 1074-1091. http://doi:10.1177/0731684417702001Search in Google Scholar
Basaid D, Benmounah A, Aribi Ch, May A. Experimental study of repair of aircraft structures by adhesive patches based on epoxy and fiberglass. Journal of Materials and Engineering Structures. 2019; 6(3):409–426.Search in Google Scholar
Gu J-U, Yoon H-S, Choi N-S. Caractérisation de l’émission acoustique d’une plaque d’aluminium crantée réparée avec un patch en fibre composite. Composites Part A: Applied Science and Manufacturing. 2012;43(12):2211–2220. http://doi:10.1016/j.compositesa.2012.07.018Search in Google Scholar
Benkheira A, Belhouari M, Benbarek S. Comparison of Double- and Single-Bonded Repairs to Symmetrical Composite Structures. Journal of Failure Analysis and Prevention.2018. http://doi:10.1007/s11668-018-0557-7Search in Google Scholar
Kaddouri N, Madani K, Rezgani L, Mokhtari M, Feaugas X. Analysis of the effect of modifying the thickness of a damaged and repaired plate by composite patch on the J-Integral; effect of bonding defects. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020;42(8). http://doi:10.1007/s40430-020-02515-ySearch in Google Scholar
Madani K, Touzain S, Feaugas X, Cohendouz S, Ratwani M. Experimental and numerical study of repair techniques for panels with geometrical discontinuities. Computational Materials Science. 2010; 48(1):83–93. http://doi:10.1016/j.commatsci.2009.12.005Search in Google Scholar
Aldeen A, Mahdi D, Zhongwei C, Disher I, Mohamad B. Effect of isothermal and isochronal aging on the microstructure and precipitate evolution in beta-quenched n36 Zirconium alloy. Facta Universitatis-Series Mechanical Engineering.2023. https://doi:10.22190/FUME230405019ASearch in Google Scholar
Rivallant S, Bouvet C, Hongkarnjanakul N . Failure analysis of CFRP laminates subjected to compression after impact simulation using discrete interface elements.Compos. Part A: Appl. Sci. Manuf. 2013.55:83-93. https://doi.org/10.1016/j.compositesa.2013.08.003Search in Google Scholar
Rashnooie R, Zeinoddini M, Ahmadpour F, Beheshti Aval SB, Chen T. A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates. Engineering Fracture Mechanics. 2023.279(17):200-230. https://doi.org/10.1016/j.engfracmech.2022.109017Search in Google Scholar
Ait Kaci, K Madani, M Mokhtari, X Feaugas, S Touzain. Impact of composite patch on the J-Integral in adhesive layer for repaired Aluminum plate. Advances in Aircraft and Spacecraft Science. 2017; 4(6): 679-699. https://doi.org/10.12989/aas.2017.4.6.679.Search in Google Scholar
Bernhard Horn, Johannes Neumayer and Klaus Drechsler. Influence of patch length and thickness on strength and stiffness of patched laminates. Journal of Composite Materials. 2018;52(16):2199–2212. https://doi.org/10.1177/0021998317740413Search in Google Scholar
K Madani, S Touzain, X Feaugas, M Benguediab, M Ratwani. Stress distribution in a 2024-T3 aluminum plate with a circular notch, repaired by a graphite/epoxy composite patch. International Journal of Adhesion and Adhesives. 2009; 29: 225-233. https://doi:org/10.1016/j.ijadhadh.2008.05.004Search in Google Scholar
Rezgani L, Madani K, Feaugas X, Touzain S, Cohendoz S, Valette J. Influence of water ingress onto the crack propagation rate in a AA2024-T3 plate repaired by a carbon/epoxy patch. Aerospace Science and Technology.2016;55:359–365. https://doi:10.1016/j.ast.2016.06.010Search in Google Scholar
Wahrhaftig AM, Plevris V, Mohamad B A, Pereira D L .Minimum design bending moment for systems of equivalent stiffness. Structures.2022;57:105224. https://doi.org/10.1016/j.istruc.2023.105224Search in Google Scholar
Al-Abboodi H, Fan H, Al-Bahrani M, Abdelhussien A, Mohamad B. Mechanical characteristics of nano-crystalline material in metallic glass formers. Facta Universitatis-Series Mechanical Engineering. 2023. https://doi:10.22190/FUME230128016ASearch in Google Scholar
Davis M, Bond D. Principles and practices of adhesive bonded structural joints and repairs. International Journal of Adhesion and Adhesives.1999;19:91–105. https://doi.org/10.1016/S0143-7496(98)00026-8Search in Google Scholar
Xi J, Yu Z. Toughening mechanism of rubber reinforced epoxy composites by thermal and microwave curing. J. Appl. Polym. Sci. 2017;135(5): 45767–45775. https://doi.org/10.1002/app.45767Search in Google Scholar
Maleki A, Saeedifar M, Najafabadi MA, Zarouchas D. The Fatigue Failure Study of Repaired Aluminum Plates by Composite Patches using Acoustic Emission. Engineering Fracture Mechanics.2017; 210(1):300-311. https://doi.org/10.1016/j.engfracmech.2017.12.034
Seidl AL. Repair Aspects of Composite and Adhesively Bonded Aircraft Structures. Handbook of Composites. Chapter 39. Springer. 1998;857-882.Search in Google Scholar
Zitoune R, Collombet F. Numerical Prediction of the Thrust Force Responsible of Delamination During the Drilling of the Long-fibre Composite Structures. Composites Part A: Applied Science and Manufacturing.2007;38(3):858–866. https://doi.org/10.1016/j.compositesa.2006.07.009Search in Google Scholar