Open Access

Numerical Modelling and Simulation of the Shear-Slitting Process of Electrical Steels


Cite

Jin SY, Pramanik A, Basak AK et al. Burr formation and its treatments—a review. International J of Adv Man Tech. 2020; 107: 2189–2210. https://doi.org/10.1007/s00170-020-05203-2 Search in Google Scholar

Ghadbeigi H, Al-Rubaye A, Robinson FCJ et al. Blanking induced damage in thin 3.2% silicon steel sheets. Prod Eng. 2020; 14: 53–64. https://doi.org/10.1007/s11740-019-00931-1 Search in Google Scholar

Arslan Y, Özdemir A. Punch structure, punch wear and cut profiles of AISI304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches. Int J of Adv Man Tech. 2016; 87: 587–599. https://doi.org/10.1007/s00170-016-8515-6 Search in Google Scholar

Falconnet E, Makich H, Chambert J, Monteil G, Picart P. Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear. 2012; 296: 598-606. https://doi.org/10.1016/j.wear.2012.07.031 Search in Google Scholar

Kurosaki Y, Mogi H, Fujii H. Importance of punching and workability in non-oriented electrical steel sheets. J of Mag and Magn Mat. 2008; 320: 2474–2480. https://doi.org/10.1016/j.jmmm.2008.04.073 Search in Google Scholar

Lewis N, Anderson P, Hall J, Gao Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans on Mag. 2016; 52 (5): 1-4. https://doi.org/10.1109/TMAG.2016.2530304 Search in Google Scholar

Liu Y, Wang Ch, Han H, Shan D, Guo B. Investigation on effect of ultrasonic vibration on micro-blanking process of copper foil. Int J of Adv Man Tech. 2017; 93: 2243-2249. https://doi.org/10.1007/s00170-017-0684-4 Search in Google Scholar

Boehm L, Hartmann C, Gilch I, Stoecker A, Kawalla R, Wei X, Hirt G, Heller M, Korte-Kerzel S, Leuning N et al. Grain size influence on the magnetic property deterioration of blanked non-oriented electrical steels. Materials. 2021; 14: 7055. https://doi.org/10.3390/ma14227055 Search in Google Scholar

Wilczyński W. Wpływ technologii na właściwości magnetyczne rdzeni maszyn elektrycznych. IEI Warszawa 2003 (in Polish). Search in Google Scholar

Miyagi D, Miki K, Nakano M, Takahashi N. Influence of compressive stress on magnetic properties of laminated electrical steel sheets. IEEE Trans of Mag. 2010; 46: 318-321. https://doi.org/10.1109/TMAG.2009.2033550. Search in Google Scholar

Naumoski H, Riedmüller B, Minkow A. Herr U. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. J of Mag and Magn Mat. 2015; 392: 126–133.https://doi.org/10.1016/j.jmmm.2015.05.031 Search in Google Scholar

Xiong X, Hu S, Hu K, Zeng S. Texture and magnetic property evolution of non-oriented Fe-Si steel due to mechanical cutting, Jof Magn and Magn Mat. 2016; 401: 982-990. https://doi.org/10.1016/j.jmmm.2015.10.023 Search in Google Scholar

Leuning N, Steentjes S, Schulte M, Bleck W, Hameyer K. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel. J of Magn and Magn Mat. 2016; 417: 42-48. https://doi.org/10.1016/j.jmmm.2016.05.049 Search in Google Scholar

Wang X, Wang Z, Cui R, Li Sh. Influence of blanking process on the magnetic properties of non-oriented electrical steel lamination. J of Shan Jiao Tong Univ. 2019; 53(9): 1115-1121. https://doi.org/10.1109/TMAG.2018.2799839 Search in Google Scholar

Wang N, Golovashchenko S.F. Mechanism of fracture of aluminum blanks subjected to stretching along the sheared edge. J of Mat Proc Tech. 2016; 233: 142–160. https://doi.org/10.1016/j.jmatprotec.2016.02.022 Search in Google Scholar

Falconnet E, Chambert J, Makich H, Monteil G, Winter S, Nestler M, Galiev E, Hartmann F, Psyk V, Kräusel V, Dix M. Adiabatic blanking: Influence of clearance, impact energy, and velocity on the blanked surface. J of Man and Mat Proc. 2021; 5: 35. Search in Google Scholar

Molitor D.A, Kubik C, Hetfleisch R.H, Groche P. Workpiece image-based tool wear classification in blanking processes using deep convolutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2 Search in Google Scholar

Mucha J, Jaworski J. The quality issue of the parts blanked from thin silicon sheets. JMEPEG. 2017; 26: 1865–1877. https://doi.org/10.1007/s11665-017-2589-7 Search in Google Scholar

Toda H, Zaizen Y, Namikawa M, Shiga N, Oda Y, Morimoto S. Iron loss deterioration by shearing process in non-oriented electrical steel with different thicknesses and its influence on estimation of motor iron loss. IEEJ J of Ind Appl. 2014; 3 (1): 55-61. https://doi.org/10.1541/ieejjia.3.55 Search in Google Scholar

Omura T, Zaizen Y, Fukumura M, Senda K, Toda H. Effect of hardness and thickness of nonoriented electrical steel sheets on iron loss deterioration by shearing process. IEEE Trans on Magn. 2015; 51(11). https://doi.org/10.1109/TMAG.2015.2443176 Search in Google Scholar

Schoppa A, Schneider J, Roth J.O. Influence of the cutting process on the magnetic properties of non-oriented electrical steels. J of Magn and Magn Mat. 2000; 215-216: 100-102. https://doi.org/10.1016/S0304-8853(00)00077-9 Search in Google Scholar

Rygal R, Moses A. J, Derebasi N, Schneider J, Schoppa A. Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels. J of Magn and Mag Mat. 2000; 215–216: 687–689. https://doi.org/10.1016/S0304-8853(00)00259-6 Search in Google Scholar

Subramonian S, Altan T, Campbell C, Ciocirlan B. Determination of forces in high speed blanking using FEM and experiments. J of Mat Proc Tech. 2013; 213: 2184-2190. https://doi.org/10.1016/j.jmatprotec.2013.06.014 Search in Google Scholar

Wang Z, Li S, Cui R, Wang X, Wang B. Influence of grain size and blanking clearance on magnetic properties deterioration of non-oriented electrical steel. IEEE Trans on Magn. 2018; 54 (5): 1–7. https://doi.org/10.1109/TMAG.2018.2799839 Search in Google Scholar

Winter K, Liao Z, Ramanathan R, Axinte D, Vakil G, Gerada C. How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel. Mat and Des. 210. 2021. https://doi.org/10.1016/j.matdes.2021.110051 Search in Google Scholar

Smudde CM, D’Elia CR, San Marchi CW, Hill MR, Gibeling JC. Effects of residual stress on orientation dependent fatigue crack growth rates in additively manufactured stainless steel. Int J of Fat. 2023; 169: 107489. https://doi.org/10.1016/j.ijfatigue.2022.107489 Search in Google Scholar

Khatri N, Barkachary BM, Muneeswaran B, Al-Sayegh R, Luo X, Goel S. Surface defects incorporated diamond machining of silicon. Int J of Extr Man. 2020; 2(4): 045102. https://doi.org/10.1088/2631-7990/abab4a Search in Google Scholar

Zhao Y, Wang S, Yu W, Long P, Zhang J, Tian W, Gao F, Jin Z, Zheng H, Wang C et al. Simulation and Experimental Study of Laser Processing NdFeB Microarray Structure. Micromachines 2023; 14: 808. https://doi.org/10.3390/mi14040808 Search in Google Scholar

Leuning N, Jaeger N, Schauerte M, Stöcker B, Kawalla A et al. Material design for low loss non-oriented electrical steel for energy efficient drives. Materials 2021; 14: 6588. https://doi.org/10.3390/ma14216588 Search in Google Scholar

Molitor DA, Kubik C, Hetfleisch RH, Groche P. Workpiece image-based tool wear classification in blanking processes using deep convolutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2 Search in Google Scholar

Kamarul Adnan AA, Azinee SN, Norsilawati N, Izzul KAM. Analysis of the influence of the blanking clearance size to the burr development on the sheet of mild steel, brass and aluminium in blanking process. J of Ach in Mat and ManEng 2022;111(1):26-32. https://doi.org/10.5604/01.3001.0015.9093. Search in Google Scholar

Dzidowski ES. Mechanizm pękania poślizgowego w aspekcie dekohezji sterowanej metali. Wydawnictwo Politechniki Wrocławskiej. Wrocław 1990 (in Polish). Search in Google Scholar

Gutknecht F, Steinbach F, Hammer T, Clausmeyer T, Volk W, Tekkaya AE. Analysis of shear cutting dual phase steel by application of an advanced damage model, 21st European Conference on Fracture ECF21. 20-24 June 201. Catania Italy. Procedia Structural Integrity. 2016; 2:1700-1707. https://doi.org/10.1016/j.prostr.2016.06.215 Search in Google Scholar

Kułakowski M. Badania wpływu parametrów i warunków procesu cięcia mechanicznego na lokalne zmiany właściwości laserowanych blach elektrotechnicznych. Rozprawa doktorska. Politechnika Koszalińska. Koszalin 2023 (in Polish). Search in Google Scholar

Kukielka L, Kulakowska A, Patyk R. Numerical modeling and simulation of the movable contact tool-worpiece and application in technological processes. Jof Syst. Cyb and Inf. 2010; 8(3): 36-41. Search in Google Scholar

Kukielka L. Nonlinear modeling for elasto/visco – plastic contact problem in technological processes, International Scientific IFNA – ANS Journal, Problems of non – linear Analysis in Engineering Systems 2004;2:39-53. Search in Google Scholar

Kałduński P, Kukiełka L. The numerical analysis of the influence of the blankholder force and the friction coefficient on the value of the drawing force. PAMM 2007; 7 (1): 4010045-4010046. https://doi.org/10.1002/pamm.200701059 Search in Google Scholar

Kałduński P, Kukiełka L. The sensitivity analysis of the drawpiece response on the finite element shape parameter. PAMM. 2008; 8 (1): 10725-10726.https://doi.org/10.1002/pamm.200810725 Search in Google Scholar

Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Frac Mech. 1985; 21 (1): 31-48. https://doi.org/10.1016/0013-7944(85)90052-9 Search in Google Scholar

Rickhey F, Hong S. Stress triaxiality in anisotropic metal sheets— definition and experimental acquisition for numerical damage prediction. Materials. 2022; 15(11):3738. https://doi.org/10.3390/ma15113738 Search in Google Scholar

Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J of Mech Sci. 2004; 46: 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006 Search in Google Scholar

Kuo SK, Lee WC, Lin SY, Lu CY. The influence of cutting edge deformations on magnetic performance degradation of electrical steel. 2014 17th International Conference on Electrical Machines and Systems (ICEMS) 2014; 3041-3046. https://doi.org/10.1109/ICEMS.2014.7014017 Search in Google Scholar

Cao H, Hao L, Yi J, Zhang X, Luo Z, Chen Sh et al. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel. J of Mag and Magnetic Materials. 2016; 406: 42–47. https://doi.org/10.1016/j.jmmm.2015.12.098 Search in Google Scholar