Open Access

Homotopy Perturbation Method with Trefftz Functions and Simcenter STAR-CCM+ Used for the Analysis of Flow Boiling Heat Transfer


Cite

Tibirica CB, Ribatski G. Flow boiling in micro-scale channels - Synthesized literature review. International Journal of Refrigeration. 2013;36(2): 301-324. https://doi.org/10.1016/j.ijrefrig.2012.11.019 Search in Google Scholar

Da Silva PF, de Oliveira JD, Copetti JB, Macagnan MH, Cardoso EM. Flow boiling pressure drop and flow patterns of R-600a in a multiport minichannels. International Journal of Refrigeration. 2023;148: 13-24. http://doi.org/10.1016/j.ijrefrig.2023.01.001 Search in Google Scholar

Wang D, Wang D, Hong F, Xu J, Zhanga C. Experimental study on flow boiling characteristics of R-1233zd(E) of counter-flow interconnected minichannel heat sink. International Journal of Heat and Mass Transfer. 2023;215(124481):1-19. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124481 Search in Google Scholar

Rafałko G, Grzybowski H, Dzienis P, Zaborowska I, Mosdorf R, Litak G. Recurrence analysis of phase distribution changes during boiling flow in parallel minichannels. The European Physical Journal Special Topics. 2023;232: 201-207. https://doi.org/10.1140/epjs/s11734-022-00741-0 Search in Google Scholar

Saghir MZ, Alhajaj Z. Optimum multi-mini-channels height for heat enhancement under forced convection condition. Energies. 2021;14(7020):1-13. https://doi.org/10.3390/en14217020 Search in Google Scholar

Piasecka M, Piasecki A, Dadas N. Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-channel Heat Sink Using Simcenter STAR-CCM+ Software. Energies. 2022;15(536):1-20.https://doi.org/10.3390/en15020536 Search in Google Scholar

Piasecka M, Strąk K. Influence of the Surface Enhancement on the Heat Transfer in a Minichannel. Heat Transfer Engineering. 2019;40(13-14): 1162-1175. https://doi.org/10.1080/01457632.2018.1457264 Search in Google Scholar

Piasecka M, Maciejewska B, Łabędzki P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies. 2020;13(6647): 1-25. https://doi.org/10.3390/en13246647 Search in Google Scholar

Hadamard J. Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique. Princet. Univ. Bull. 1902;13: 49–52. Search in Google Scholar

Kurpisz K, Nowak AJ. Inverse Thermal Problems. Southampton, UK and Boston: Computational Mechanics Publications; 1995. Search in Google Scholar

Bakushinskii A, Goncharsky A. Ill-Posed Problems:Theory and Applications. Dordrecht: Kluwer; 1995. Search in Google Scholar

Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Numerical Methods for the Solution of Ill-Posed Problems. London: Kluwer Academic; 1990. Search in Google Scholar

Lesnic D. Inverse Problems with Applications in Science and Engineering. New York: Chapman and Hall/CRC; 2021. https://doi.org/10.1201/9780429400629 Search in Google Scholar

Belgacem Ben F, El Fekih H. On Cauchy’s Problem: I. A Variational Steklov-Poincar´e Theory. Inverse Problems. 2005;21:1915–1936. https://doi.org/10.1088/0266-5611/21/6/008 Search in Google Scholar

Ciałkowski MJ, Frąckowiak A, Grysa K. Solution of a stationary inverse heat conduction problems by means of Trefftz non-continuous method. International Journal of Heat and Mass Transfer. 2007;50: 2170-2181. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.030 Search in Google Scholar

Maciąg A, Grysa K. Temperature dependent thermal conductivity determination and source identification for nonlinear heat conduction by means of the Trefftz and Homotopy perturbation methods. International Journal of Heat and Mass Transfer. 2016;100: 627-633. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.103 Search in Google Scholar

Ciałkowski MJ, Grysa K. A sequential and global method of solving an inverse problem of heat conduction equation. Journal of Theoretical and Applied Mechanics. 2010;48(1): 111-134. Search in Google Scholar

Liu CS. A modified collocation Trefftz method for the inverse Cauchy problem of Laplace equation. Engineering Analysis with Boundary Elements. 2008;32(9):778-785. https://doi.org/10.1016/j.enganabound.2007.12.002 Search in Google Scholar

Qin QH. The Trefftz Finite and Boundary Element Method. Southampton: WIT Press; 2000. Search in Google Scholar

Grysa K, Maciąg A. Homotopy perturbation method and Trefftz functions in the source function identification. Singapore: APCOM&ISCM, 2013 Dec 11-14. Search in Google Scholar

Hożejowska S. Homotopy perturbation method combined with Trefftz method in numerical identification of liquid temperature in flow boiling. Journal of Theoretical and Applied Mechanics. 2015;53(4): 969-980. https://doi.org/10.15632/jtam-pl.53.4.969 Search in Google Scholar

Maciąg A, Pawińska A. The solution of nonlinear direct and inverse problems for beam by means of the Trefftz functions. European Journal of Mechanics - A/Solids. 2022;92:1-6. https://doi.org/10.1016/j.euromechsol.2021.104476 Search in Google Scholar

Trefftz E. Ein Gegenstück zum Ritzschen Verfahren. 2 Int. Kongress für Technische Mechanik. 1926: 131-137. Search in Google Scholar

Hożejowska S, Hożejowski L, Piasecka M. Radial basis functions in mathematical modelling of flow boiling in minichannels. EPJ Web of Conferences. 2017;143(02037):1-5. Search in Google Scholar

Zhao X, Li JM, Riffat SB. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering. 2008;28:1942-1951. https://doi.org/10.1016/j.applthermaleng.2007.12.006 Search in Google Scholar

Zibart A, Kenig EY. Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger. International Journal of Heat and Mass Transfer. 2021;165(120567):1-17. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120567 Search in Google Scholar

Gorobets V, Trokhaniak V, Bohdan Y, Antypov I. Numerical Modeling of Heat Transfer and Hydrodynamics in Compact Shifted Arrangement Small Diameter Tube Bundles. Journal of Applied and Computational Mechanics. 2021;7(1):292-301. https://doi.org/10.22055/jacm.2020.31007.1855 Search in Google Scholar

Lee W-J, Jeong JH. Development of a numerical analysis model for a multi-port minichannel heat exchanger considering a two-phase flow distribution in the header. Part I: Numerical modelling. International Journal of Heat and Mass Transfer. 2019;138: 1264-128 https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.100 Search in Google Scholar

Adam A, Han D, He W, Chen J. Numerical analysis of cross-flow plate type indirect evaporative cooler: Modeling and parametric analysis. Applied Thermal Engineering. 2021;185(116379):1-13. https://doi.org/10.1016/j.applthermaleng.2020.116379 Search in Google Scholar

Ayli E, Bayer O, Aradag S. Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes. International Journal of Thermal Sciences. 2016;109: 279-290. https://doi.org/10.1016/j.ijthermalsci.2016.06.021 Search in Google Scholar

Mu Y-T, Chen L, He Y-L, Tao W-Q. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. International Journal of Heat and Mass Transfer. 2015;85: 147-157 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.093 Search in Google Scholar

https://www.3m.com/3M/en_US/p/d/b5005005025/ Search in Google Scholar

https://www.3m.com/3M/en_US/p/d/b40044867/ Search in Google Scholar

https://www.3m.com/3M/en_US/p/d/b40045142/ Search in Google Scholar

https://www.3m.com/ Search in Google Scholar

Piasecka M, Hożejowska S, Maciejewska B, Pawińska A. Time-dependent heat transfer calculations with Trefftz and Picard methods for flow boiling in a mini-channel heat sink. Energies. 2021;14: 1-24. https://doi.org/10.3390/en14071832 Search in Google Scholar

Biazar J, Ghazvini H. Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications. 2009;10: 2633-2640. https://doi.org/10.1016/j.nonrwa.2008.07.002 Search in Google Scholar

Piasecka M, Strąk K. Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations. Energies. 2021;14(4891):1-29. https://doi.org/10.3390/en14164891 Search in Google Scholar