Use of 3D Optical Techniques in the Analysis of the Effect of Adding Rubber Recyclate to the Matrix on Selected Strength Parameters of Epoxy–Glass Composites
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I. Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Composite Structures. 1 wrzesień 2019;223:110966.Search in Google Scholar
Sienkiewicz M. Kompozyty poliuretanowo-gumowe otrzymane przy udziale recyklatów gumowych jako sposób na zagospodarowanie poużytkowych opon samochodowych. Politechnika Gdańska; 2010.Search in Google Scholar
\Lopacka J. Nanocząstki wykorzystywane w celu poprawy w\laściwości fizycznych kompozytów polimerowych stosowanych jako materia\ly opakowaniowe do żywności. Polimery. 2013;58 (11–12):864–8.Search in Google Scholar
Andrzej Wilczyński. Polimerowe kompozyty włókniste. Warszawa: Wydawnictwo Naukowo Techniczne; 1996.Search in Google Scholar
Golewski P, Sadowski T. A novel application of alumina fiber mats as TBC protection for CFRP/epoxy laminates –Laboratory tests and numerical modeling. Journal of the European Ceramic Society. 2018;38(8):2920–7.Search in Google Scholar
A.A. Nayeeif, Z.K. Hamdan, Z.W. Metteb, F.A. Abdulla, N.A. Jebur. Natural filler based composite materials. 1 lipiec 2022;116(1):5–13.Search in Google Scholar
Dębska B, Lichołai L, Miąsik P. Assessment of the Applicability of Sustainable Epoxy Composites Containing Waste Rubber Aggregates in Buildings. Buildings [Internet]. 2019;9(2). Dostępne na: https://www.mdpi.com/2075-5309/9/2/31Search in Google Scholar
Żuk D, Abramczyk N, Drewing S. Investigation of the influence of recyclate content on Poisson number of composites. Science and Engineering of Composite Materials. 2021;28(1):668–75.Search in Google Scholar
Marta Chojnacka. Zastosowanie kopolimerów blokowych i recyklatów gumowych do modyfikacji asfaltów. 2012;TOM 16.Search in Google Scholar
Parasiewicz W., Pyskło L., Magryta J., Recykling zużytych opon samochodowych. Instytut Przemysłu Gumowego „STOMIL”, Piastów 2005.Search in Google Scholar
Al-Shablle M, Al-Waily M, Njim E. Analytical evaluation of the influence of adding rubber layers on free vibration of sandwich structure with presence of nano-reinforced composite skins. Archives of Materials Science and Engineering. 2022;116(2):57–70.Search in Google Scholar
Jweeg M, Alazawi D, Jebur Q, Al-Waily M, Yasin N. Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading. 2021;108(2):75–85.Search in Google Scholar
Valášek P, Žarnovskỳ J, Müller M. Thermoset composite on basis of recycled rubber. W: Advanced materials research. Trans Tech Publ; 2013. s. 67–73.Search in Google Scholar
Luo J, Dai CY, Wang Z, Liu K, Mao WG, Fang DN, i in. In-situ measurements of mechanical and volume change of LiCoO2 lithium-ion batteries during repeated charge–discharge cycling by using digital image correlation. Measurement. 2016;94:759–70.Search in Google Scholar
Gljušćić M, Franulović M, Lanc D, Božić Ž. Digital image correlation of additively manufactured CFRTP composite systems in static tensile testing. Procedia Structural Integrity. 2021;31:116–21.Search in Google Scholar
Kneć M, Sadowski T, Balawender T. Technological problems and experimental investigation of hybrid: clinched-adhesively bonded joint. Archives of Metallurgy and Materials. 2011;(2).Search in Google Scholar
Nelson TM, Quiros KAM, Mariano CA, Sattari S, Ulu A, Dominguez EC, i in. Associating local strains to global pressure–volume mouse lung mechanics using digital image correlation. Physiological Reports. 2022;10(19):e15466.Search in Google Scholar
Lusiak T, Knec M. Use of ARAMIS for Fatigue Process Control in the Accelerated Test for Composites. Transportation Research Procedia. 2018;35:250–8.Search in Google Scholar
Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, i in. Full-field strain measurements for validation of meso-FE analysis of textile composites. Composites Part A: Applied Science and Manufacturing. 2008;39(8):1218–31.Search in Google Scholar
Le AT, Gacoin A, Li A, Mai TH, Wakil NE. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Composites Part B: Engineering. 2015;75:201–11.Search in Google Scholar
Nag-Chowdhury S, Bellégou H, Pillin I, Castro M, Longrais P, Feller JF. Crossed investigation of damage in composites with embedded quantum resistive strain sensors (sQRS), acoustic emission (AE) and digital image correlation (DIC). Composites Science and Technology. 2018;160:79–85.Search in Google Scholar
Paul SC, Pirskawetz S, Zijl GPAG van, Schmidt W. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC). Cement and Concrete Research. 2015;69:19–24.Search in Google Scholar
Zhang Z, Richardson M. Structural integrity evaluation of impacted glass fibre reinforced polyester composites using Optical deformation and Strain Measurement system (ARAMIS). W: ACMC/SAMPE Conference on Marine Composites, Plymouth, 11-12 September 2003. University of Plymouth; 2003. s. 99–106.Search in Google Scholar
Golewski GL. Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Construction and Building Materials. 2019;213:142–55.Search in Google Scholar
Grynkiewicz-Bylina B, Rakwic B, Słomka-Słupik B. Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Scientific Reports. 23 kwiecień 2022;12(1):6683.Search in Google Scholar
https://orzelsa.com/wp-content/uploads/2020/10/Karta-techniczna-1-3-mm.pdf.Search in Google Scholar
Liang S, Gning PB, Guillaumat L. A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Composites Science and Technology. t. 72, nr 5, s. 535–543, 2012, doi: https://doi.org/10.1016/j.compscitech.2012.01.011.Search in Google Scholar
Koricho EG, Belingardi G, Beyene AT. Bending fatigue behavior of twill fabric E-glass/epoxy composite. Composite Structures. t. 111, s. 169–178, 2014, doi: https://doi.org/10.1016/j.compstruct.2013.12.032.Search in Google Scholar
Bhatnagar A. Lightweight Ballistic Composites: Military and Law-Enforcement Applications. Elsevier Science, 2016. [Online]. Dostępne na: https://books.google.pl/books?id=qZPBCQAAQBAJSearch in Google Scholar
Chatterjee VA, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact. Composite Structures. t. 225, s. 111148, 2019, doi: https://doi.org/10.1016/j.compstruct.2019.111148.Search in Google Scholar
Abdel-Magid B, Ziaee S, Gass K, Schneider M. The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites. Composite Structures, t. 71, nr 3, s. 320–326, 2005, doi: https://doi.org/10.1016/j.compstruct.2005.09.022.Search in Google Scholar