S-Adenosylmethionine Inhibits the Proliferation of Retinoblastoma Cell Y79, Induces Apoptosis and Cell Cycle Arrest of Y79 Cells by Inhibiting the Wnt2/β-Catenin Pathway
Article Category: Original Article
Published Online: Oct 04, 2024
Received: Apr 24, 2024
Accepted: Aug 05, 2024
DOI: https://doi.org/10.2478/aite-2024-0020
Keywords
© 2024 Mushi Liu et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Retinoblastoma is one of the most common primary intraocular malignancies in young children. Traditional treatment methods such as chemotherapy often come with significant adverse effects, such as hearing loss, cognitive impairment, and vision loss. Therefore, there is an urgent need to explore a novel therapeutic drug that is both effective and safe. S-adenosylmethionine (SAM) is a natural compound known to exhibit anti-proliferative effects in various cancer cell lines. However, to date, no studies investigated the effects of SAM on retinoblastoma cells and its potential mechanisms of action. Therefore, this study aims to investigate the impact of SAM on retinoblastoma cells and explore its possible mechanisms of action, with the hope of providing new insights into the treatment of this disease. The optimal concentration of SAM was determined using the Cell Counting Kit-8 assay. The effect of SAM on retinoblastoma proliferation was assessed using the 5-ethynyl-2′-deoxyuridine cell proliferation assay. Y79 cells were subjected to hematoxylin and eosin stain and electron microscopy to observe any morphological changes induced by SAM. The stages of SAM’s action on the retinoblastoma cell cycle and its apoptotic effects were measured using flow cytometry. The apoptotic effect of SAM on retinoblastoma was further confirmed using the TUNEL assay. Differential expression of related genes was detected through RT-PCR.