Open Access

Epigenetic toxicity and cytotoxicity of perfluorooctanoic acid and its effects on gene expression in embryonic mouse hypothalamus cells


Cite

Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: Past, present, and future. Environ Sci Technol 2011;45:7954–61. doi: 10.1021/es2011622Lindstrom AB Strynar MJ Libelo EL Polyfluorinated compounds: Past, present, and future Environ Sci Technol 2011457954 61 10.1021/es201162221866930Open DOISearch in Google Scholar

Giesy JP, Kannan K. Perfluorochemical surfactants in the environment. Environ Sci Technol 2002;36:146A-52A. doi: 10.1021/es022253tGiesy JP Kannan K Perfluorochemical surfactants in the environment Environ Sci Technol 200236146A 52A 10.1021/es022253t11999053Open DOISearch in Google Scholar

Schecter A, Colacino J, Haffner D, Patel K, Opel M, Päpke O, Birnbaum L. Perfluorinated compounds, polychlorinated biphenyl, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ Health Perspect 2010;118:796–802. doi: 10.1289/ehp.0901347Schecter A Colacino J Haffner D Patel K Opel M Päpke O Birnbaum L Perfluorinated compounds, polychlorinated biphenyl, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA Environ Health Perspect 2010118796 802 10.1289/ehp.0901347289885620146964Open DOISearch in Google Scholar

Langer V, Dreyer A, Ebinghaus R. Polyfluorinated compounds in residential and nonresidential indoor air. Environ Sci Technol 2010;44:8075–81. doi: 10.1021/es102384zLanger V Dreyer A Ebinghaus R Polyfluorinated compounds in residential and nonresidential indoor air Environ Sci Technol 2010448075 81 10.1021/es102384z20925396Open DOISearch in Google Scholar

D’Eon JC, Mabury SA. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol 2011;45:7974–84. doi: 10.1021/es200171yD’Eon JC Mabury SA Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol 2011457974 84 10.1021/es200171y21630688Open DOISearch in Google Scholar

Nicole W. PFOA and cancer in a highly exposed community: New findings from the C8 science panel. Environ Health Perspect 2013;121:A340. doi: 10.1289/ehp.121-A340Nicole W PFOA and cancer in a highly exposed community: New findings from the C8 science panel Environ Health Perspect 2013121A340 10.1289/ehp.121-A340385550724284021Open DOISearch in Google Scholar

Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 2007;115:1670–6. doi: 10.1289/ehp.10334Apelberg BJ Witter FR Herbstman JB Calafat AM Halden RU Needham LL Goldman LR Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth Environ Health Perspect 20071151670 6 10.1289/ehp.10334207284718008002Open DOISearch in Google Scholar

Tao L, Kannan K, Wong CM, Arcaro KF, Butenhoff JL. Perfluorinated compounds in human milk from Massachusetts, USA. Environ Sci Technol 2008;42:3096–101. doi: 10.1021/es702789kTao L Kannan K Wong CM Arcaro KF Butenhoff JL Perfluorinated compounds in human milk from Massachusetts, USA Environ Sci Technol 2008423096 101 10.1021/es702789k18497172Open DOISearch in Google Scholar

von Ehrenstein OS, Fenton SE, Kato K, Kuklenyik Z, Calafat AM, Hines EP. Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod Toxicol 2009;27:239–45. doi: 10.1016/j.reprotox.2009.03.001von Ehrenstein OS Fenton SE Kato K Kuklenyik Z Calafat AM Hines EP Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women Reprod Toxicol 20092723945 10.1016/j.reprotox.2009.03.00119429402Open DOISearch in Google Scholar

Llorca M, Farré M, Picó Y, Teijón ML, Alvarez JG, Barceló D. Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Int 2010;36:584–92. doi: 10.1016/j.envint.2010.04.016Llorca M Farré M Picó Y Teijón ML Alvarez JG Barceló D Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food Environ Int 201036584 92 10.1016/j.envint.2010.04.01620494442Open DOISearch in Google Scholar

Brantsæter AL, Whitworth KW, Ydersbond TA, Haug LS, Haugen M, Knutsen HK, Thomsen C, Meltzer HM, Becher G, Sabaredzovic A, Hoppin JA, Eggesbø M, Longnecker MP. Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women. Environ Int 2013;54:74–84. doi: 10.1016/j.envint.2012.12.014Brantsæter AL Whitworth KW Ydersbond TA Haug LS Haugen M Knutsen HK Thomsen C Meltzer HM Becher G Sabaredzovic A Hoppin JA Eggesbø M Longnecker MP Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women Environ Int 20135474 84 10.1016/j.envint.2012.12.014Open DOISearch in Google Scholar

Russell MH, Waterland RL, Wong F. Calculation of chemical elimination half-life from blood with an ongoing exposure source: The example of perfluorooctanoic acid (PFOA). Chemosphere 2015;129:210–6. doi: 10.1016/j.chemosphere.2014.07.061Russell MH Waterland RL Wong F Calculation of chemical elimination half-life from blood with an ongoing exposure source: The example of perfluorooctanoic acid (PFOA) Chemosphere 2015129210 6 10.1016/j.chemosphere.2014.07.061Open DOISearch in Google Scholar

Legler J, Hamers T, van E van der S de Bor M, Schoeters G, van der Ven L, Eggesbo M, Koppe J, Feinberg M, Trnovec T. The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr 2011;94:1933S–8S. doi: 10.3945/ajcn.110.001669 Legler J Hamers T van E van der S de Bor M Schoeters G van der Ven L Eggesbo M Koppe J Feinberg M Trnovec T The OBELIX project: early life exposure to endocrine disruptors and obesity Am J Clin Nutr 2011941933S 8 10.3945/ajcn.110.001669Open DOISearch in Google Scholar

Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol 2015;11:653–61. doi: 10.1038/nrendo.2015.163Heindel JJ Newbold R Schug TT Endocrine disruptors and obesity Nat Rev Endocrinol 201511653 61 10.1038/nrendo.2015.163Open DOISearch in Google Scholar

Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28:1057–68. doi: 10.1038/nbt.1685Portela A Esteller M Epigenetic modifications and human disease Nat Biotechnol 2010281057 68 10.1038/nbt.1685Open DOISearch in Google Scholar

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95. doi: 10.1038/cr.2011.22Bannister AJ Kouzarides T Regulation of chromatin by histone modifications Cell Res 201121381 95 10.1038/cr.2011.22Open DOISearch in Google Scholar

Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15:R17–29. doi: 10.1093/hmg/ddl046Mattick JS Makunin IV Non-coding RNA Hum Mol Genet 200615R17 29 10.1093/hmg/ddl046Open DOISearch in Google Scholar

Razin A, Riggs AD. DNA methylation and gene function. Science 1980;210:604–10. doi: 10.1126/science.6254144Razin A Riggs AD DNA methylation and gene function Science 1980210604 10 10.1126/science.6254144Open DOISearch in Google Scholar

Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6:597–610. doi: 10.1038/nrg1655Robertson KD DNA methylation and human disease Nat Rev Genet 20056597 610 10.1038/nrg1655Open DOISearch in Google Scholar

Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription? Trends Genet 1997;13:444–9. doi: 10.1016/S0168-9525(97)01268-7Kass SU Pruss D Wolffe AP How does DNA methylation repress transcription? Trends Genet 199713444 9 10.1016/S0168-9525(97)01268-7Open DOISearch in Google Scholar

Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013;339:1567–70. doi: 10.1126/science.1230184Suvà ML Riggi N Bernstein BE Epigenetic reprogramming in cancer Science 20133391567 70 10.1126/science.1230184382155623539597Open DOISearch in Google Scholar

Janesick AS, Shioda T, Blumberg B. Transgenerational inheritance of prenatal obesogen exposure. Mol Cell Endocrinol 2014;398:31–5. doi: 10.1016/j.mce.2014.09.002Janesick AS Shioda T Blumberg B Transgenerational inheritance of prenatal obesogen exposure Mol Cell Endocrinol 201439831 5 10.1016/j.mce.2014.09.002426262525218215Open DOISearch in Google Scholar

Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, LeBron C, Witter FR, Apelberg BJ, Hernández-Roystacher M, Jaffe A, Halden RU, Sidransky D. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 2010;5:539–46. doi: 10.4161/epi.5.6.12378Guerrero-Preston R Goldman LR Brebi-Mieville P Ili-Gangas C LeBron C Witter FR Apelberg BJ Hernández-Roystacher M Jaffe A Halden RU Sidransky D Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds Epigenetics 20105539 46 10.4161/epi.5.6.12378332249520523118Open DOISearch in Google Scholar

Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S. Low-level perfluorooctanoic acid enhances 3 T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Anal Toxicol 2018;38:398–407. doi: 10.1002/jat.3549Ma Y Yang J Wan Y Peng Y Ding S Li Y Xu B Chen X Xia W Ke Y Xu S Low-level perfluorooctanoic acid enhances 3 T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation J Anal Toxicol 201838398 407 10.1002/jat.354929094436Open DOISearch in Google Scholar

Wen Y, Mirji N, Irudayaraj J. Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicology in Vitro 2020;65:104797. doi: 10.1016/j.tiv.2020.104797Wen Y Mirji N Irudayaraj J Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism Toxicology in Vitro 202065104797 10.1016/j.tiv.2020.10479732068100Open DOISearch in Google Scholar

Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L. Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 2004;145:393–400. doi: 10.1210/en.2003-0946Belsham DD Cai F Cui H Smukler SR Salapatek AM Shkreta L Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders Endocrinology 2004145393 400 10.1210/en.2003-094614551229Open DOISearch in Google Scholar

AAT Bioquest. IC50 calculator, version 1 [displayed 25 june 2021]. Available at https://www.aatbio.com/tools/ic50-calculator-v1AAT Bioquest IC50 calculator, version 1 [displayed 25 june 2021] Available at https://www.aatbio.com/tools/ic50-calculator-v1Search in Google Scholar

Hagenaars A, Vergauwen L, Benoot D, Laukens K, Knapen D. Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere 2013;91:844–56. doi: 10.1016/j.chemosphere.2013.01.056Hagenaars A Vergauwen L Benoot D Laukens K Knapen D Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity Chemosphere 201391844 56 10.1016/j.chemosphere.2013.01.05623427857Open DOISearch in Google Scholar

Peng S, Yan L, Zhang J, Wang Z, Tian M, Shen H. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid. J Pharm Biomed Anal 2013;86:56–64. doi: 10.1016/j.jpba.2013.07.014Peng S Yan L Zhang J Wang Z Tian M Shen H An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid J Pharm Biomed Anal 2013865664 10.1016/j.jpba.2013.07.01423978341Open DOISearch in Google Scholar

Yan S, Zhang H, Zheng F, Sheng N, Guo X, Dai J. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci Rep 2015;5:11029. doi: 10.1038/srep11029Yan S Zhang H Zheng F Sheng N Guo X Dai J Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice Sci Rep 2015511029 10.1038/srep11029446428626066376Open DOISearch in Google Scholar

Liu W, Irudayaraj J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem Toxicol 2020;141:111358. doi: 10.1016/j.fct.2020.111358Liu W Irudayaraj J Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization Food Chem Toxicol 2020141111358 10.1016/j.fct.2020.11135832315686Open DOISearch in Google Scholar

Pierozan P, Jerneren F, Karlsson O. Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol 2018;92:1729–39. doi: 10.1007/s00204-018-2181-4Pierozan P Jerneren F Karlsson O Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells Arch Toxicol 2018921729 39 10.1007/s00204-018-2181-4596262129502166Open DOISearch in Google Scholar

Mignard V, Lalier L, Paris F, Vallette FM. Bioactive lipids and the control of Bax pro-apoptotic activity. Cell Death Dis 2014;5:e1266. doi: 10.1038/cddis.2014.226Mignard V Lalier L Paris F Vallette FM Bioactive lipids and the control of Bax pro-apoptotic activity Cell Death Dis 20145e1266 10.1038/cddis.2014.226404788024874738Open DOISearch in Google Scholar

Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 1999;19:7860–9. doi: 10.1523/JNEUROSCI.19-18-07860.1999Cregan SP MacLaurin JG Craig CG Robertson GS Nicholson DW Park DS Slack RS Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons J Neurosci 1999197860 9 10.1523/JNEUROSCI.19-18-07860.1999Open DOISearch in Google Scholar

Jost CA, Marin MC, Kaelin Jr WG. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 1997;389:191–4. doi: 10.1038/38298Jost CA Marin MC Kaelin Jr WG p73 is a simian [correction of human] p53-related protein that can induce apoptosis Nature 1997389191 4 10.1038/382989296498Open DOISearch in Google Scholar

Stiewe T, Pützer BM. p73 in apoptosis. Apoptosis 2001;6:447–52. doi: 10.1023/a:1012433522902Stiewe T Pützer BM p73 in apoptosis Apoptosis 2001644752 10.1023/a:1012433522902Open DOISearch in Google Scholar

Warita K, Mitsuhashi T, Hoshi N, Ohta K, Suzuki S, Takeuchi Y, Miki T. A unique pattern of bisphenol A effects on nerve growth factor gene expression in embryonic mouse hypothalamic cell line N-44. Arh Hig Rada Toksikol 2014;65:293–9. doi: 10.2478/10004-1254-65-2014-2494Warita K Mitsuhashi T Hoshi N Ohta K Suzuki S Takeuchi Y Miki T A unique pattern of bisphenol A effects on nerve growth factor gene expression in embryonic mouse hypothalamic cell line N-44 Arh Hig Rada Toksikol 201465293 9 10.2478/10004-1254-65-2014-249425205691Open DOISearch in Google Scholar

Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J 1992;11:961–71. PMCID: PMC556537Pagano M Pepperkok R Verde F Ansorge W Draetta G Cyclin A is required at two points in the human cell cycle EMBO J 199211961 71 PMCID: PMC55653710.1002/j.1460-2075.1992.tb05135.x5565371312467Search in Google Scholar

Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 1995;15:2612–24. doi: 10.1128/mcb.15.5.2612Ohtsubo M Theodoras AM Schumacher J Roberts JM Pagano M Human cyclin E, a nuclear protein essential for the G1-to-S phase transition Mol Cell Biol 1995152612 24 10.1128/mcb.15.5.26122304917739542Open DOISearch in Google Scholar

Brown NR, Lowe ED, Petri E, Skamnaki V, Antrobus R, Johnson L. Cyclin B and cyclin A confer different substrate recognition properties on CDK2. Cell Cycle 2007;6:1350–9. doi: 10.4161/cc.6.11.4278Brown NR Lowe ED Petri E Skamnaki V Antrobus R Johnson L Cyclin B and cyclin A confer different substrate recognition properties on CDK2 Cell Cycle 200761350 9 10.4161/cc.6.11.427817495531Open DOISearch in Google Scholar

Buhrke T, Krüger E, Pevny S, Rößler M, Bitter K, Lampen A. Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology 2015;333:53–62. doi: 10.1016/j.tox.2015.04.004Buhrke T Krüger E Pevny S Rößler M Bitter K Lampen A Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes Toxicology 201533353 62 10.1016/j.tox.2015.04.00425868421Open DOISearch in Google Scholar

Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2018;25:114–32. doi: 10.1038/cdd.2017.172Engeland K Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Cell Death Differ 201825114 32 10.1038/cdd.2017.172Open DOISearch in Google Scholar

Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000;97:4291–6. doi: 10.1073/pnas.97.8.4291Chang BD Watanabe K Broude EV Fang J Poole JC Kalinichenko TV Roninson IB Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases Proc Natl Acad Sci USA 2000974291 6 10.1073/pnas.97.8.4291Open DOISearch in Google Scholar

Ferrandiz N, Caraballo JM, Garcia-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, Bretones G, Quintanilla A, Munoz-Alonso MJ, Blanco R, Reyes JC, Agell N, Delgado MD, Dotto GP, León J. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS ONE 2012;7:e37759. doi: 10.1371/journal.pone.0037759Ferrandiz N Caraballo JM Garcia-Gutierrez L Devgan V Rodriguez-Paredes M Lafita MC Bretones G Quintanilla A Munoz-Alonso MJ Blanco R Reyes JC Agell N Delgado MD Dotto GP León J p21 as a transcriptional co-repressor of S-phase and mitotic control genes PLoS ONE 20127e37759 10.1371/journal.pone.0037759Open DOISearch in Google Scholar

Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994;369:574–8. doi: 10.1038/369574a0Waga S Hannon GJ Beach D Stillman B The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA Nature 1994369574 8 10.1038/369574a0Open DOISearch in Google Scholar

Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993;366:701–4. doi: 10.1038/366701a0Xiong Y Hannon GJ Zhang H Casso D Kobayashi R Beach D p21 is a universal inhibitor of cyclin kinases Nature 1993366701 4 10.1038/366701a0Open DOISearch in Google Scholar

Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805–16. doi: 10.1016/0092-8674(93)90499-GHarper JW Adami GR Wei N Keyomarsi K Elledge SJ The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Cell 199375805 16 10.1016/0092-8674(93)90499-GOpen DOISearch in Google Scholar

De Santi M, Galluzzi L, Lucarini S, Paoletti MF, Fraternale A, Duranti A, De Marco C, Fanelli M, Zaffaroni N, Brandi G, Magnani M. The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Res 2011;13:R33. doi: 10.1186/bcr2855De Santi M Galluzzi L Lucarini S Paoletti MF Fraternale A Duranti A De Marco C Fanelli M Zaffaroni N Brandi G Magnani M The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines Breast Cancer Res 201113R33 10.1186/bcr2855321919621435243Open DOISearch in Google Scholar

Kondo S, Barna BP, Kondo Y, Tanaka Y, Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B, Barnett GH. WAF1/CIP1 increases the susceptibility of p53 nonfunctional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 1996;13:1279–85. PMID: 8808702Kondo S Barna BP Kondo Y Tanaka Y Casey G Liu J Morimura T Kaakaji R Peterson JW Werbel B Barnett GH WAF1/CIP1 increases the susceptibility of p53 nonfunctional malignant glioma cells to cisplatin-induced apoptosis Oncogene 1996131279 85 PMID: 8808702Search in Google Scholar

Kreis NN, Sommer K, Sanhaji M, Kramer A, Matthess Y, Kaufmann M, Strebhardt K, Yuan J. Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Cell Cycle 2009;8:460–72. doi: 10.4161/cc.8.3.7651Kreis NN Sommer K Sanhaji M Kramer A Matthess Y Kaufmann M Strebhardt K Yuan J Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21WAF1/CIP1 Cell Cycle 20098460 72 10.4161/cc.8.3.765119177004Open DOISearch in Google Scholar

Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 2006;3:19–24. doi: 10.2174/156720506775697061Hempstead BL Dissecting the diverse actions of pro- and mature neurotrophins Curr Alzheimer Res 2006319 24 10.2174/15672050677569706116472198Open DOISearch in Google Scholar

Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;29:1545–64. doi: 10.1098/rstb.2006.1894 Reichardt LF Neurotrophin-regulated signalling pathways Philos Trans R Soc Lond B Biol Sci 2006291545 64 10.1098/rstb.2006.1894166466416939974Open DOISearch in Google Scholar

Davey F, Davies AM. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr Biol 1998;8:915–8. doi: 10.1016/s0960-9822(07)00371-5Davey F Davies AM TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons Curr Biol 19988915 8 10.1016/s0960-9822(07)00371-5Open DOISearch in Google Scholar

Miller FD, Kaplan DR. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 2001;58:1045–53. doi: 10.1007/PL00000919Miller FD Kaplan DR Neurotrophin signalling pathways regulating neuronal apoptosis Cell Mol Life Sci 2001581045 53 10.1007/PL0000091911529497Open DOISearch in Google Scholar

Warita K, Mitsuhashi T, Ohta K, Suzuki S, Hoshi N, Miki T, Takeuchi Y. In vitro evaluation of gene expression changes for gonadotropin-releasing hormone 1, brain-derived neurotrophic factor and neurotrophic tyrosine kinase, receptor, type 2, in response to bisphenol a treatment. Congenit Anom (Kyoto) 2013 ; 53 : 42–5. doi : 10.1111/j.1741-4520.2012.00381.xWarita K Mitsuhashi T Ohta K Suzuki S Hoshi N Miki T Takeuchi Y In vitro evaluation of gene expression changes for gonadotropin-releasing hormone 1, brain-derived neurotrophic factor and neurotrophic tyrosine kinase, receptor, type 2, in response to bisphenol a treatment Congenit Anom (Kyoto) 2013 53 425 10.1111/j.1741-4520.2012.00381.x23185968Open DOISearch in Google Scholar

Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, Tan DSW, Robson P, Loh Y, Quake SR, Burkholder WF. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 2016;13:833–6. doi: 10.1038/nmeth.3961Cheow LF Courtois ET Tan Y Viswanathan R Xing Q Tan RZ Tan DSW Robson P Loh Y Quake SR Burkholder WF Single-cell multimodal profiling reveals cellular epigenetic heterogeneity Nat Methods 201613833 6 10.1038/nmeth.396127525975Open DOISearch in Google Scholar

Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, Christiansen L, DeWitt WS, Lee C, Regalado SG, Read DF, Steemers FJ, Disteche CM, Trapnell C, Shendure J. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 2018;174:1309–24. doi: 10.1016/j.cell.2018.06.052Cusanovich DA Hill AJ Aghamirzaie D Daza RM Pliner HA Berletch JB Filippova GN Huang X Christiansen L DeWitt WS Lee C Regalado SG Read DF Steemers FJ Disteche CM Trapnell C Shendure J A single-cell atlas of in vivo mammalian chromatin accessibility Cell 20181741309 24 10.1016/j.cell.2018.06.052615830030078704Open DOISearch in Google Scholar

Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19:187–91 doi: 10.1038/561Jones PL Veenstra GJ Wade PA Vermaak D Kass SU Landsberger N Strouboulis J Wolffe AP Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription Nat Genet 199819187 91 10.1038/5619620779Open DOISearch in Google Scholar

Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008;320:1224–9. doi: 10.1126/science.1153252Chahrour M Jung SY Shaw C Zhou X Wong ST Qin J Zoghbi HY MeCP2, a key contributor to neurological disease, activates and represses transcription Science 20083201224 9 10.1126/science.1153252244378518511691Open DOISearch in Google Scholar

eISSN:
1848-6312
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other