1. bookVolume 69 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
First Published
26 Mar 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Non-target toxicity of novel insecticides

Published Online: 07 Jul 2018
Page range: 86 - 102
Received: 01 Feb 2018
Accepted: 01 May 2018
Journal Details
License
Format
Journal
First Published
26 Mar 2007
Publication timeframe
4 times per year
Languages
English

Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.

Keywords

1. Oberemok VV, Laikova KV, Gninenko YI, Zaitsev AS, Nyadar PM, Adeyemi TA. A short history of insecticides. J Plant Prot Res 2015;55:221-6. doi: 10.1515/jppr-2015-003310.1515/jppr-2015-0033Open DOISearch in Google Scholar

2. Amweg EL, Weston DP, Ureda NM. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 2005;24:966-72. doi: 10.1897/04-146R1.110.1897/04-146R1.1Open DOISearch in Google Scholar

3. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EA, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut R 2015;22:5-34. doi: 10.1007/s11356-014-3470-y10.1007/s11356-014-3470-yOpen DOISearch in Google Scholar

4. Dryden MW, Rust MK. The cat flea - biology, ecology and control. Vet Parasitol 1994;52:1-19. doi: 10.1016/0304-4017(94)90031-010.1016/0304-4017(94)90031-0Open DOISearch in Google Scholar

5. Marsh RE. Vertebrate pest control chemicals and their use in urban and rural environments. In: Keirger R, editor. Handbook of Pesticide Toxicology. 2nd ed. San Diego (CA): Academic Press; 2001. p. 251-62. doi: 10.1016/B978-012426260-7.50010-010.1016/B978-012426260-7.50010-0Open DOISearch in Google Scholar

6. Roberts DR, Andre RG. Insecticide resistance issues in vector-borne disease-control. Am J Trop Med Hyg 1994;50:21-34.10.4269/ajtmh.1994.50.21Open DOISearch in Google Scholar

7. Costa LG.Toxic effects of pesticides. In: Klaassen CD, editor. Casarett and Doull’s Toxicology: The Basic Science of Poisons. 8th ed. New York (NY): McGraw-Hill Education; 2013. p. 983-91.Search in Google Scholar

8. Stratonovitch P, Elias J, Denholm I, Slater R, Semenov MA. An individual-based model of the evolution of pesticide resistance in heterogenous environments: control of Meligethes aeneus population in oilseed rape crops. PLoS One 2014;9:e115631. doi: 10.1371/journal.pone.0115631Search in Google Scholar

9. Phillips BM, Anderson BS, Voorhees JP, Siegler K, Denton D, TenBrook P, Larsen K, Isorena P, Tjeerdema RS. Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters. Integr Environ Asses 2014;10:449-55. doi: 10.1002/ieam.153410.1002/ieam.1534Open DOISearch in Google Scholar

10. Suratman S, Edwards JW, Babina K. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Rev Environ Health 2015;30:65-79. doi: 10.1515/reveh-2014-0072Search in Google Scholar

11. Hawkins TR. Re-reading Silent Spring. Environ Health Persp 1994;102:536-7. PMCID: PMC1569756Search in Google Scholar

12. Kabasenche WP, Skinner MK. DDT, epigenetic harm and transgenerational environmental justice. Environ Health 2014;13:62. doi: 10.1186/1476-069X-13-6210.1186/1476-069X-13-62Open DOISearch in Google Scholar

13. Agricultural Sustainability Institute (ASI). What is sustainable agriculture? [displayed 6 February 2018]. Available at http://asi.ucdavis.edu/programs/sarep/about/what-is-sustainable-agriculture/#concept-themesSearch in Google Scholar

14. Casida JE. The greening of pesticide-environment interactions: some personal observations. Environ Health Persp 2012;120:487-93. doi: 10.1289/ehp.110440510.1289/ehp.1104405Open DOISearch in Google Scholar

15. Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honeybees (Apis mellifera L.). J Insect Physiol 2016;86:40-7. doi: 10.1016/j.jinsphys.2016.01.00110.1016/j.jinsphys.2016.01.001Open DOISearch in Google Scholar

16. Tison L, Hahn ML, Holtz S, Rossner A, Greggers U, Bischoff G, Menzel R. Honeybees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ Sci Technol 2016;50:7218-27. doi: 10.1021/acs.est.6b0265810.1021/acs.est.6b02658Open DOISearch in Google Scholar

17. Deng YX, Cao M, Shi DX, Yin ZQ, Jia RY, Xu J, Wang C, Lv C, Liang XX, He CL, Yang ZR, Zhao J. Toxicological evaluation of neem (Azadirachta indica) oil: Acute and subacute toxicity. Environ Toxicol Phar 2013;35:240-6. doi: 10.1016/j.etap.2012.12.01510.1016/j.etap.2012.12.015Open DOISearch in Google Scholar

18. Adel MM, Sehnal F. Azadirachtin potentiates the action of ecdysteroid agonist RH-2485 in Spodoptera littoralis. J Insect Physiol 2000;46:267-74. doi: 10.1016/S0022-1910(99)00179-110.1016/S0022-1910(99)00179-1Open DOISearch in Google Scholar

19. Lopez O, Fernandez-Bolanos JG, Gil MV. New trends in pest control: the search for greener insecticides. Green Chem 2005;7:431-42. doi: 10.1039/B500733J10.1039/b500733jOpen DOISearch in Google Scholar

20. Stokstad E. Agriculture. Field research on bees raises concern about low-dose pesticides. Science 2012;335:1555. doi: 10.1126/science.335.6076.155510.1126/.335.6076.1555Open DOISearch in Google Scholar

21. Fairbrother A, Purdy J, Anderson T, Fell R. Risks of neonicotinoid insecticides to honeybees. Environ Toxicol Chem 2014;33:719-31. doi: 10.1002/etc.252710.1002/etc.2527Open DOISearch in Google Scholar

22. Samson-Robert O, Labrie G, Chagnon M, Fournier V. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honeybees. PLoS One 2014;9:e0119357. doi: 10.1371/journal.pone.0108443Search in Google Scholar

23. Sadaria AM, Supowit SD, Halden RU. Mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment: nationwide reconnaissance in United States wastewater. Environ Sci Technol 2016;50:6199-206. doi: 10.1021/acs.est.6b0103210.1021/acs.est.6b01032Open DOISearch in Google Scholar

24. Tapparo A, Marton D, Giorio C, Zanella A, Solda A, Marzano M, Vivan L, Girolami V. Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ Sci Technol 2012;46:2592-9. doi: 10.1021/es203515210.1021/es2035152Open DOISearch in Google Scholar

25. Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft SA, Rajotte EG, Joshi NK, Vaughn M. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One 2013;8:e72587. doi: 10.1371/journal.pone.0072587Search in Google Scholar

26. Yang EC, Chuang YC, Chen YL, Chang LH. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honeybee (Hymenoptera: Apidae). J Econ Entomol 2008;101:1743-8. doi: 10.1603/0022-0493-101.6.1743Search in Google Scholar

27. Cresswell JE. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honeybees. Ecotoxicology 2011;20:149-57. doi: 10.1007/s10646-010-0566-010.1007/s10646-010-0566-0Open DOISearch in Google Scholar

28. Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS. Assessment of chronic sublethal effects of imidacloprid on honeybee colony health. PLoS One 2015;10:e0118748. doi: 10.1371/journal.pone.0118748Search in Google Scholar

29. Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A. Chronic exposure to neonicotinoids reduces honeybee health near corn crops. Science 2017;356:1395-7. doi: 10.1126/science.aam747010.1126/.aam7470Open DOISearch in Google Scholar

30. Williamson SM, Willis SJ, Wright GA. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 2014;23:1409-18. doi: 10.1007/s10646-014-1283-x10.1007/s10646-014-1283-xOpen DOISearch in Google Scholar

31. Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using video-tracking to assess sublethal effects of pesticides on honeybees (Apis mellifera L.). Environ Toxicol Chem 2012;31:1349-54. doi: 10.1002/etc.183010.1002/etc.1830Open DOISearch in Google Scholar

32. Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun 2013;4:1634. doi: 10.1038/ncomms264810.1038/ncomms2648Open DOISearch in Google Scholar

33. Zhang E, Nieh JC. The neonicotinoid imidacloprid impairs honeybee aversive learning of simulated predation. J Exp Biol 2015;218:3199-205. doi: 10.1242/jeb.12747210.1242/jeb.127472Open DOISearch in Google Scholar

34. Mengoni Goñalons C, Farina WM. Effects of sublethal doses of imidacloprid on young adult honeybee behaviour. PLoS One 2015;10:e0140814. doi: 10.1371/journal.pone.0140814Search in Google Scholar

35. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotox Environ Safe 2004;57:410-9. doi: 10.1016/j.ecoenv.2003.08.00110.1016/j.ecoenv.2003.08.001Open DOISearch in Google Scholar

36. El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Con Tox 2008;54:653-61. doi: 10.1007/s00244-007-9071-810.1007/s00244-007-9071-8Open DOISearch in Google Scholar

37. Poquet Y, Kairo G, Tchamitchian S, Brunet JL, Belzunces LP. Wings as a new route of exposure to pesticides in the honeybee. Environ Toxicol Chem 2015;34:1983-8. doi: 10.1002/etc.3014Search in Google Scholar

38. Suchail S, Debrauwer L, Belzunces LP. Metabolism of imidacloprid in Apis mellifera. Pest Manag Sci 2004;60:291-6. doi: 10.1002/ps.77210.1002/ps.772Open DOISearch in Google Scholar

39. Zhu YC, Yao J, Adamczyk J, Luttrell R. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honeybee physiology (Apis mellifera). PLoS One 2017;12:e0178421. doi: 10.1371/journal.pone.0178421Search in Google Scholar

40. Zhu YC, Yao J, Adamczyk J, Luttrell R. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honeybee (Apis mellifera). PLoS One 2017;12:e0176837. doi: 10.1371/journal.pone.0176837Search in Google Scholar

41. Raimets R, Karise R, Mänd M, Kaart T, Ponting S, Song J, Cresswell JE. Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.). Pest Manag Sci 2017;74:541-6. doi: 10.1002/ps.475610.1002/ps.4756Open DOISearch in Google Scholar

42. Boily M, Sarrasin B, DeBlois C, Aras P, Chagnon M. Acetylcholinesterase in honeybees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut R 2013;20:5603-14. doi: 10.1007/s11356-013-1568-210.1007/s11356-013-1568-2Open DOISearch in Google Scholar

43. Tosi S, Démares FJ, Nicolson SW, Medrzycki P, Pirk CW, Human H. Effects of a neonicotinoid pesticide on thermoregulation of African honeybees (Apis mellifera scutellata). J Insect Physiol 2016;93-94:56-63. doi: 10.1016/j.jinsphys.2016.08.01010.1016/j.jinsphys.2016.08.010Open DOISearch in Google Scholar

44. Wu YY, Zhou T, Wang Q, Dai PL, Xu SF, Jia HR, Wang X. Programmed cell death in the honeybee (Apis mellifera) (Hymenoptera: Apidae) worker brain induced by imidacloprid. J Econ Entomol 2015;108:1486-94. doi: 10.1093/jee/tov14610.1093/jee/tov146Open DOISearch in Google Scholar

45. De Almeida Rossi, C, Roat, TC, Tavares, DA, Cintra-Socolowski, P, Malaspina, O. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Con Tox 2013;65;234-43. doi: 10.1007/s00244-013-9897-110.1007/s00244-013-9897-1Open DOISearch in Google Scholar

46. Oliveira RA, Roat TC, Carvalho SM, Malaspina O. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybee Apis mellifera (Hymenoptera: Apidae). Environ Toxicol 2014;29:1122-33. doi: 10.1002/tox.2184210.1002/tox.21842Open DOISearch in Google Scholar

47. Catae AF, Roat TC, De Oliveira RA, Nocelli RC, Malaspina O. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Techniq 2014;77:274-81. doi: 10.1002/jemt.2233910.1002/jemt.22339Open DOISearch in Google Scholar

48. De Almeida Rossi C, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae). Microsc Res Techniq 2013;76:552-8. doi: 10.1002/jemt.22199Search in Google Scholar

49. Nicodemo D, Maioli MA, Medeiros HC, Guelfi M, Balieira KV, De Jong D, Mingatto FE. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ Toxicol Chem 2014;33:2070-5. doi: 10.1002/etc.265510.1002/etc.2655Open DOISearch in Google Scholar

50. Powner MB, Salt TE, Hogg C, Jeffery G. Improving mitochondrial function protects bumblebees from neonicotinoid pesticides. PLoS One 2016;11:e0166531. doi: 10.1371/journal.pone.0166531Search in Google Scholar

51. Wessler IK, Kirkpatrick CJ. Non-neuronal acetylcholine involved in reproduction in mammals and honeybees. J Neurochem 2017;142(Suppl 2):144-50. doi: 10.1111/jnc.1395310.1111/jnc.13953Open DOISearch in Google Scholar

52. Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler A, Vidondo B, Neumann P, Williams GR. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc Roy Soc B Biol Sci 2016;283:20160506. doi: 10.1098/rspb.2016.0506Search in Google Scholar

53. Gajger IT, Sakač M, Gregorc A. Impact of thiamethoxam on honeybee queen (Apis mellifera carnica) reproductive morphology and physiology. B Environ Contam Tox 2017;99:297-02.Search in Google Scholar

54. Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS. Sperm viability and gene expression in honeybee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J Insect Physiol 2016;89:1-8. doi: 10.1016/j.jinsphys.2016.03.00410.1016/j.jinsphys.2016.03.004Open DOISearch in Google Scholar

55. Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honeybees. P Natl Acad Sci USA 2013;110:18466-71. doi: 10.1073/pnas.131492311010.1073/pnas.1314923110Open DOISearch in Google Scholar

56. Wegener J, Ruhnke H, Milchreit K, Kleebaum K, Franke M, Mispagel S, Bischoff G, Kamp G, Bienefeld K. Secondary biomarkers of insecticide-induced stress of honeybee colonies and their relevance for overwintering strength. Ecotoxicol Environ Safe 201;132: 379-89.Search in Google Scholar

57. Tavares DA, Roat TC, Carvalho SM, Silva-Zacarin EC, Malaspina O. In vitro effects of thiamethoxam on larvae of Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 2015;135:370-8. doi: 10.1016/j.chemosphere.2015.04.090Search in Google Scholar

58. Tavares DA, Dussaubat C, Kretzschmar A, Carvalho SM, Silva-Zacarin ECM, Malaspina O, Bérail G, Brunet JL, Belzunces LP. Exposure of larvae to thiamethoxam affects the survival and physiology of the honeybee at post-embryonic stages. Environ Pollut 2017;229:386-93. doi: 10.1016/j.envpol.2017.05.09210.1016/j.envpol.2017.05.092Open DOISearch in Google Scholar

59. Friol PS, Catae AF, Tavares DA, Malaspina O, Roat TC. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees? Chemosphere 2017;185:56-66. doi: 10.1016/j.chemosphere.2017.0610.1016/j.chemosphere.2017.06Open DOISearch in Google Scholar

60. Peng YC, Yang EC. Sublethal dosage of imidacloprid reduces the microglomerular density of honeybee mushroom bodies. Sci Rep 2016;6:19298. doi: 10.1038/srep1929810.1038/srep19298Open DOISearch in Google Scholar

61. Yang EC, Chang HC, Wu WY, Chen YW. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 2012;7:e49472. doi: 10.1371/journal.pone.0049472Search in Google Scholar

62. Wu MC, Chang YW, Lu KH, Yang EC. Gene expression changes in honeybees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem Molec 2017;88:12-20. doi: 10.1016/j.ibmb.2017.06.01610.1016/j.ibmb.2017.06.016Open DOISearch in Google Scholar

63. Shi TF, Wang YF, Liu F, Qi L, Yu LS. Influence of the neonicotinoid insecticide thiamethoxam on miRNA expression in the honeybee (Hymenoptera: Apidae). J Insect Sci 2017;17:96. doi: 10.1093/jisesa/iex07410.1093/jisesa/iex074Open DOISearch in Google Scholar

64. Shi TF, Wang YF, Liu F, Qi L, Yu LS. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honeybees (Hymenoptera: Apidae). J Econ Entomol 2017;110:2283-9. doi: 10.1093/jee/tox26210.1093/jee/tox262Open DOISearch in Google Scholar

65. Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid and Varroa destructor on survival and health of European honeybees, Apis mellifera. Insect Sci 2017;24:467-77. doi: 10.1111/1744-7917.1233510.1111/1744-7917.12335Open DOISearch in Google Scholar

66. De Smet L, Hatjina F, Ioannidis P, Hamamtzoglou A, Schoonvaere K, Francis F, Meeus I, Smagghe G, de Graaf DC. Stress indicator gene expression profiles, colony dynamics and tissue development of honeybees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLoS One 2017;12:e0171529. doi: 10.1371/journal.pone.0171529Search in Google Scholar

67. Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 2010;19:207-15. doi: 10.1007/s10646-009-0406-210.1007/s10646-009-0406-2Open DOISearch in Google Scholar

68. Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li YR, Wheeler JG, Laycock I, Pook CJ, de Ibarra NH, Smirnoff N, Tyler, CR. Differential sensitivity of honeybees and bumble bees to a dietary insecticide (imidacloprid). Zoology 2012;115:365-71. doi: 10.1016/j.zool.2012.05.00310.1016/j.zool.2012.05.003Open DOISearch in Google Scholar

69. Cresswell JE, Robert FX, Florance H, Smirnoff N. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honeybees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag Sci 2014;70:332-7. doi: 10.1002/ps.356910.1002/ps.3569Open DOISearch in Google Scholar

70. Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine NE. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J Appl Ecol 2016;53:1440-9. doi: 10.1111/1365-2664.1268910.1111/1365-2664.12689Open DOISearch in Google Scholar

71. Laycock I, Cotterell KC, O’Shea-Wheller TA, Cresswell JE. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotox Environ Safe 2014;100:153-8. doi: 10.1016/j.ecoenv.2013.10.027Search in Google Scholar

72. Bryden J, Gill RJ, Mitton RA, Raine NE, Jansen VA. Chronic sublethal stress causes bee colony failure. Ecol Lett 2013;16:1463-9. doi: 10.1111/ele.1218810.1111/ele.12188Open DOISearch in Google Scholar

73. Baron GL, Raine NE, Brown MJF. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc Roy Soc B Biol Sci 2017;284:20170123. doi: 10.1098/rspb.2017.0123.Search in Google Scholar

74. Czerwinski MA, Sadd B. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J Exp Zool Part A 2017;327:273-83. doi: 10.1002/jez.208710.1002/jez.2087Open DOISearch in Google Scholar

75. Moffat C, Buckland ST, Samson AJ, McArthur R, Chamosa Pino V, Bollan KA, Huang JT, Connolly CN. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Sci Rep 2016;6:24764. doi: 10.1038/srep2476410.1038/srep24764Open DOISearch in Google Scholar

76. Stanley DA, Smith KE, Raine NE. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci Rep 2015;5:16508. doi:10.1038/srep1650810.1038/srep16508Open DOISearch in Google Scholar

77. Wilson DE, Velarde RA, Fahrbach SE, Mommaerts V, Smagghe G. Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects. Arch Insect Biochem 2013;84:43-56. doi: 10.1002/arch.2111210.1002/arch.21112Open DOISearch in Google Scholar

78. Laycock I, Cresswell JE. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid. PLoS One 2013;8: e79872. doi: 10.1371/journal.pone.0079872Search in Google Scholar

79. European Food Safety Authority (EFSA). Review report for the active substance acetamiprid SANCO/1392/2001. OJ L 2004;145:36.Search in Google Scholar

80. Brunet JL, Badiou A, Belzunces LP. In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 2005;61:742-8. doi: 10.1002/ps.1046Search in Google Scholar

81. Badawy MEI, Nasr HM, Rabea EI. Toxicity and biochemical changes in the honeybee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 2015;46:177-93. doi: 10.1007/s13592-014-0315-010.1007/s13592-014-0315-0Open DOISearch in Google Scholar

82. Stanley J, Sah K, Jain SK, Bhatt JC, Sushil SN. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 2015;119:668-74. doi: 10.1016/j.chemosphere.2014.07.03910.1016/j.chemosphere.2014.07.039Open DOISearch in Google Scholar

83. Silvina N, Florencia J, Nicolas P, Cecilia P, Lucia P, Abbate S, Leonidas CL, Sebastian D, Yamandu M, Veronica C, Horacio H. Neonicotinoids transference from the field to the hive by honeybees: Towards a pesticide residues biomonitor. Sci Total Environ 2017;581:25-31. doi: 10.1016/j.scitotenv.2017.01.01110.1016/j.scitotenv.2017.01.011Open DOISearch in Google Scholar

84. Arce AN, David TI, Randall EL, Rodrigues AR, Colgan TJ, Wurm Y, Gill RJ. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. J Appl Ecol 2016;54:1199-208. doi: 10.1111/1365-2664.1279210.1111/1365-2664.12792Open DOISearch in Google Scholar

85. Liu Y, Liu S, Zhang H, Gu Y, Li X, He M, Tan H. Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera. Chemosphere 2017;184:806-11. doi: 10.1016/j.chemosphere.2017.06.04510.1016/j.chemosphere.2017.06.045Open DOISearch in Google Scholar

86. Van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, Belzunces LP. Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Env Sust 2013;5:293-305. doi: 10.1016/j.cosust.2013.05.00710.1016/j.cosust.2013.05.007Open DOISearch in Google Scholar

87. Retschnig G, Neumann P, Williams GR. Thiacloprid-Nosema ceranae interactions in honeybees: host survivorship but not parasite reproduction is dependent on pesticide dose. J Invertebr Pathol 2014;118:18-9. doi: 10.1016/j.jip.2014.02.00810.1016/j.jip.2014.02.008Open DOISearch in Google Scholar

88. Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 2010;12:774-82.doi: 10.1111/j.1462-2920.2009.02123.x10.1111/j.1462-2920.2009.02123.xOpen DOISearch in Google Scholar

89. Blanken LJ, van Langevelde F, van Dooremalen C. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees. Proc Royal Soc B Biol Sci 2015;282:20151738. doi: 10.1098/rspb.2015.1738Search in Google Scholar

90. Van der Zee R, Gray A, Pisa L, de Rijk T. An observational study of honeybee colony winter losses and their association with Varroa destructor, neonicotinoids and other risk factors. PLoS One 2015;10:e0131611. doi: 10.1371/journal.pone.0131611Search in Google Scholar

91. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011;6:e21550. doi: 10.1371/journal.pone.002155010.1371/journal.pone.0021550Open DOISearch in Google Scholar

92. Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honeybees. Proc Roy Soc B Biol Sci 2017;284:20171711. doi: 10.1098/rspb.2017.1711Search in Google Scholar

93. Alburaki M, Boutin S, Mercier PL, Loublier Y, Chagnon M, Derome N. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS One 2015;10:e0125790. doi: 10.1371/journal.pone.0125790Search in Google Scholar

94. Dance C, Botias C, Goulson D. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotox Environ Safe 2017;139:194-201. doi: 10.1016/j.ecoenv.2017.01.04110.1016/j.ecoenv.2017.01.041Open DOISearch in Google Scholar

95. Yue M, Luo S, Liu J, Wu J. Apis cerana is less sensitive to most neonicotinoids, despite of their smaller body mass. J Econ Entomol 2018;111:39-42. doi: 10.1093/jee/tox34210.1093/jee/tox342Open DOISearch in Google Scholar

96. Jin N, Klein S, Leimig F, Bischoff G, Menzel R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J Exp Biol 2015;218:2821-5. doi: 10.1242/jeb.1236110.1242/jeb.12361Open DOISearch in Google Scholar

97. Whitehorn PR, Cook N, Blackburn CV, Gill SM, Green J, Shuker DM. Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp. Proc Roy Soc B Biol Sci 2015;282:20150389. doi: 10.1098/rspb.2015.0389Search in Google Scholar

98. Thiel S, Kohler HR. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants. Ecotoxicology 2016;25:814-23. doi: 10.1007/s10646-016-1638-610.1007/s10646-016-1638-6Open DOISearch in Google Scholar

99. Barbieri R, Lester PJ, Miller AS, Ryan KG. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proc Roy Soc B Biol Sci 2013;280:20132157. doi: 10.1098/rspb.2013.2157Search in Google Scholar

100. Douglas MR, Rohr JR, Tooker JF. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J Appl Ecol 2015;52:250-60. doi: 10.1111/1365-2664.1237210.1111/1365-2664.12372Open DOISearch in Google Scholar

101. Cavallaro MC, Morrissey CA, Headley JV, Peru KM, Liber K. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environ Toxicol Chem 2017;36:372-82. doi: 10.1002/etc.353610.1002/etc.3536Open DOISearch in Google Scholar

102. Saraiva AS, Sarmento RA, Rodrigues ACM, Campos D, Fedorova G, Zlabek V, Gravato C, Pestana JLT, Soares AMVM. Assessment of thiamethoxam toxicity to Chironomus riparius. Ecotox Environ Safe 2017;137:240-6. doi: 10.1016/j.ecoenv.2016.12.0010.1016/j.ecoenv.2016.12.00Open DOISearch in Google Scholar

103. Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM. Effects of imidacloprid exposure on Chironomus riparius Meigen larvae: Linking acetylcholinesterase activity to behaviour. Ecotox Environ Safe 2011;74:1210-15. doi: 10.1016/j.ecoenv.2011.03.01810.1016/j.ecoenv.2011.03.018Open DOISearch in Google Scholar

104. Kobashi K, Harada T, Adachi Y, Mori M, Ihara M, Hayasaka D. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotox Environ Safe 2017;138:122-9. doi: 10.1016/j.ecoenv.2016.12.02510.1016/j.ecoenv.2016.12.025Open DOISearch in Google Scholar

105. Malev O, Klobučar RS, Fabbretti E, Trebše P. Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: Microalgae Desmodesmus subspicatus and amphipod Gammarus fossarum. Pestic Biochem Phys 2012;104:178-86. doi: 10.1016/j.pestbp.2012.07.00810.1016/j.pestbp.2012.07.008Open DOISearch in Google Scholar

106. Uğurlu P, Ünlü E, Satar EI. The toxicological effects of thiametoxam on Gammarus kischineffensis (Schellenberg 1937) (Crustacea: Amphipoda). Environ Toxicol Phar 2015;39;720-6. doi: 10.1016/j.etap.2015.01.01310.1016/j.etap.2015.01.013Open DOISearch in Google Scholar

107. Arican C, Traunspurger W, Spann N. The influence of thiacloprid on the feeding behaviour of the copepod, Diacyclops bicuspidatus, preying on nematodes. Nematology 2017;19:1201-15. doi: 10.1163/15685411-0000311810.1163/15685411-00003118Open DOISearch in Google Scholar

108. Chen C, Wang Y, Zhao X, Wang Q, Qian Y. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida. Chemosphere 2014;100:111-5. doi: 10.1016/j.chemosphere.2013.12.02310.1016/j.chemosphere.2013.12.023Open DOISearch in Google Scholar

109. Wang K, Pang S, Mu XY, Qi SZ, Li DZ, Cui F, Wang CJ. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 2015;132:120-6. doi: 10.1016/j.chemosphere.2015.03.00210.1016/j.chemosphere.2015.03.002Open DOISearch in Google Scholar

110. Lanteigne M, Whiting SA, Lydy MJ. Mixture toxicity of imidacloprid and cyfluthrin to two non-target species, the fathead minnow Pimephales promelas and the amphipod Hyalella azteca. Arch Environ Con Tox 2015;68:354-61. doi: 10.1007/s00244-014-0086-710.1007/s00244-014-0086-7Open DOISearch in Google Scholar

111. Chevillot F, Convert Y, Desrosiers M, Cadoret N, Veilleux E, Cabana H, Bellenger JP. Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Chemosphere 2017;186:839-47. doi: 10.1016/j.chemosphere.2017.08.04610.1016/j.chemosphere.2017.08.046Open DOISearch in Google Scholar

112. Van Hoesel W, Tiefenbacher A, Konig N, Dorn VM, Hagenguth JF, Prah U, Widhalm T, Wiklicky V, Koller R, Bonkowski M, Lagerlöf J, Ratzenböck A, Zaller, JG. Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition. Front Plant Sci 2017;8:215. doi: 10.3389/fpls.2017.00215Search in Google Scholar

113. Crosby EB, Bailey JM, Oliveri AN, Levin ED. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol Teratol 2015;49:81-90. doi: 10.1016/j.ntt.2015.04.00610.1016/j.ntt.2015.04.006Open DOISearch in Google Scholar

114. Iturburu FG, Zömisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ Toxicol Chem 2017;36:699-708. doi: 10.1002/etc.357410.1002/etc.3574Open DOISearch in Google Scholar

115. Ansoar-Rodriguez Y, Christofoletti CA, Correia JE, De Souza RB, Morreira-de-Sousa C, Marcato AC, Bueno OC, Malaspina O, Silva-Zacarin EC, Fontanetti CS. Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid: Histopathology and heat shock protein in situ loclaization. J Environ Sci Heal B 2016;51:881-7. doi: 10.1080/03601234.2016.124055910.1080/03601234.2016.1240559Open DOISearch in Google Scholar

116. Xia XH, Xia XP, Huo WR, Dong H, Zhang LX, Chang ZJ. Toxic effects of imidacloprid on adult loach (Misgurnus anguilicaudatus). Environ Toxicol Phar 2016;45:132-9. doi: 10.1016/j.etap.2016.05.03010.1016/j.etap.2016.05.030Open DOISearch in Google Scholar

117. Liu M, Wang G, Zhang SY, Zhong S, Qi GL, Wang CJ, Chuai ML, Lee KKH, Lu DX, Yang XS. From the cover: exposing imidacloprid interferes with neurogenesis through impacting on chick neural tube cell survival. Toxicol Sci 2016;153:137-48. doi: 10.1093/toxsci/kfw11110.1093/toxsci/kfw111Open DOISearch in Google Scholar

118. Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res 2015;136:97-107. doi: 10.1016/j.envres.2014.10.02310.1016/j.envres.2014.10.023Open DOISearch in Google Scholar

119. Gobeli A, Crossley D, Johnson J, Reyna K. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus). Comp Biochem Phys B 2017;195:9-15. doi: 10.1016/j.cbpc.2017.02.00110.1016/j.cbpc.2017.02.001Open DOISearch in Google Scholar

120. Hussein M, Singh V, Sethi R, Singh AK, Hassan MA. Study on embryonic effects of neonicotinoid insecticide on chick embryos. J Anat Soc India 2014;63:125-9. doi: 10.1016/j.jasi.2014.11.00610.1016/j.jasi.2014.11.006Open DOISearch in Google Scholar

121. Hussein M, Singh V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J Anat Soc India 2016;65:83-9. doi: 10.1016/j.jasi.2017.01.01210.1016/j.jasi.2017.01.012Open DOISearch in Google Scholar

122. Singh V, Hussein M, Singh AK, Hassan MA, Gupta P. Histological and immunohistochemical changes in cerebellum of chick embryos after exposure to neonicotinoid insecticide imidacloprid. J Anat Soc India 2015;64:122-7. doi: 10.1016/j.jasi.2015.10.01410.1016/j.jasi.2015.10.014Open DOISearch in Google Scholar

123. Hirano T, Yanai S, Takada T, Yoneda N, Omotehara T, Kubota N, Minami K, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. NOAEL-dose of a neonicotinoid pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations in male mice in a novel environment. Toxicol Lett 2018;282:57-63. doi: 10.1016/j.toxlet.2017.10.01010.1016/j.toxlet.2017.10.010Open DOISearch in Google Scholar

124. Sun Q, Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, Park Y. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J Agr Food Chem 2016;64:9293-306. doi: 10.1021/acs.jafc.6b0432210.1021/acs.jafc.6b04322Open DOISearch in Google Scholar

125. Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara K, Tohyama C, Maekawa F. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Front Neurosci-Switz 2016;10:228. doi: 10.3389/fnins.2016.00228Search in Google Scholar

126. De Oliveira IM, Nunes BVF, Barbosa DR, Pallares AM, Faro LRF. Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum. Toxicol Lett 2010;192:294-7. doi: 10.1016/j.toxlet.2009.11.00510.1016/j.toxlet.2009.11.005Open DOISearch in Google Scholar

127. Hirano T, Yanai S, Omotehara T, Hashimoto R, Umemura Y, Kubota N, Minami K, Nagahara D, Matsuo E, Aihara Y, Shinohara R, Furuyashiki T, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice. J Vet Med Sci 2015;77:1207-15. doi: 10.1292/jvms.15-018810.1292/jvms.15-0188Open DOISearch in Google Scholar

128. Kubandova J, Sefcikova Z, Kacmarova M, Burkus J, Cikos S, Koppel J, Fabian D. The effect of neonicotinoids on mouse preimplantation embryo development in vitro. In: Animal Physiology 2016: Proceedings of 12th International Scientific Conference; 13-15 June 2016. Bořetice, Czech Republic. Brno: Mendel University; 2016. p. 151-5.Search in Google Scholar

129. Bal R, Erdogan S, Theophilidis G, Baydas G, Naziroglu M. Assessing the effects of the neonicotinoid insecticide imidacloprid in the cholinergic synapses of the stellate cells of the mouse cochlear nucleus using whole-cell patch-clamp recording. Neurotoxicology 2010;31:113-20. doi: 10.1016/j.neuro.2009.10.00410.1016/j.neuro.2009.10.004Open DOISearch in Google Scholar

130. Terayama H, Endo H, Tsukamoto H, Matsumoto K, Umezu M, Kanazawa T, Ito M, Sato T, Naito M, Kawakami S, Fujino Y, Tatemichi M, Sakabe K. Acetamiprid accumulates in different amounts in murine brain regions. Int J Env Res Pub He 2016;13:937. doi: 10.3390/ijerph1310093710.3390/ijerph13100937Open DOISearch in Google Scholar

131. Chakroun S, Ezzi L, Grissa I, Kerkeni E, Neffati F, Bhouri R, Sallem A, Najjar MF, Hassine M, Mehdi M, Haouas Z, Ben Cheikh H. Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats. Environ Sci Pollut R 2106;23: 25191-9. doi: 10.1007/s11356-016-7650-910.1007/s11356-016-7650-9Open DOISearch in Google Scholar

132. Rodrigues KJA, Santana MB, Do Nascimento JLM, Picanco-Diniz DLW, Maues LAL, Santos SN, Ferreira VMM, Alfonso M, Duran R, Faro LRF. Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotox Environ Safe 2010;73:101-7. doi: 10.1016/j.ecoenv.2009.04.02110.1016/j.ecoenv.2009.04.021Open DOISearch in Google Scholar

133. Yanai S, Hirano T, Omotehara T, Takada T, Yoneda N, Kubota N, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice. J Vet Med Sci 2017;79:1196-203. doi: 10.1292/jvms.17-015410.1292/jvms.17-0154Open DOISearch in Google Scholar

134. Sekeroglu V, Sekeroglu ZA, Demirhan E. Effects of commercial formulations of deltamethrin and/or thiacloprid on thyroid hormone levels in rat serum. Toxicol Ind Health 2014;30:40-6. doi: 10.1177/074823371244811410.1177/0748233712448114Open DOISearch in Google Scholar

135. Shakthi Devan RK, Prabu PC, Panchapakesan S. Immunotoxicity assessment of sub-chronic oral administration of acetamiprid in Wistar rats. Drug Chem Toxicol 2015;38:328-36. doi: 10.3109/01480545.2014.96638210.3109/01480545.2014.966382Open DOISearch in Google Scholar

136. Ozdemir HH, Kara M, Yumrutas O, Uckardes F, Eraslan E, Demir CF, Bal R. Determination of the effects on learning and memory performance and related gene expressions of clothianidin in rat models. Cogn Neurodynamics 2014;8:411-6. doi: 10.1007/s11571-014-9293-1Search in Google Scholar

137. Bal R, Türk G, Yılmaz Ö, Etem E, Kuloğlu T, Baydaş G, Naziroğlu M. Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats. Cell Biol Toxicol 2012;28:187-200. doi: 10.1007/s10565-012-9215-010.1007/s10565-012-9215-0Open DOISearch in Google Scholar

138. Bal R, Türk G, Tuzcu M, Yilmaz Ö, Kuloğlu T, Gundogdu R, Gür S, Agca A, Ulas M, Cambay Z, Tuzcu Z, Gencoglu H, Guvenc M, Ozsahin AD, Kocaman N, Aslan A, Eten E. Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. J Environ Sci Heal B 2012;47:434-44. doi: 10.1080/03601234.2012.66331110.1080/03601234.2012.663311Open DOISearch in Google Scholar

139. Hsiao C, Lin CL, Lin TY, Wang SE, Wu CH. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. J Econ Entomol 2017;110:447-52. doi: 10.1097/WNR.000000000000056210.1097/WNR.0000000000000562Open DOISearch in Google Scholar

140. Gookin JL, Correa MT, Peters A, Malueg A, Mathews KG, Cullen J, Seiler G. Association of gallbladder mucocele histologic diagnosis with selected drug use in dogs: a matched case-control study. J Vet Intern Med 2015;29:1464-72. doi: 10.1111/jvim.1364910.1111/jvim.13649Open DOISearch in Google Scholar

141. Gunier RB, Bradman A, Harley KG, Kogut K, Eskenazi B. Prenatal residential proximity to agricultural pesticide use and IQ in 7-year-old children. Environ Health Persp 2017;125:057002. doi: 10.1289/EHP504Search in Google Scholar

142. Keil AP, Daniels JL, Hertz-Picciotto I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Environ Health-Glob 2014;13:3. doi: 10.1186/1476-069X-13-310.1186/1476-069X-13-3Open DOISearch in Google Scholar

143. Forrester MB. Neonicotinoid insecticide exposures reported to six poison centers in Texas. Hum Exp Toxicol 2014;33:568-73. doi: 10.1177/096032711452250010.1177/0960327114522500Open DOISearch in Google Scholar

144. Nasuti C, Cantalamessa F, Falcioni G, Gabbianelli R. Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 2003;191:233-44. doi: 10.1016/S0300-483X(03)00207-510.1016/S0300-483X(03)00207-5Open DOISearch in Google Scholar

145. Ye J, Zhao M, Niu L, Liu W. Enantioselective environmental toxicology of chiral pesticides. Chem Res Toxicol 2015;28:325-38. doi: 10.1021/tx500481n10.1021/tx500481nOpen DOISearch in Google Scholar

146. Peng W, Ding F. Enantioselective recognition of an isomeric ligand by a biomolecule: mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility. Mol BioSyst 2017;13:2226-34. doi: 10.1039/C7MB00378A10.1039/700378Open DOISearch in Google Scholar

147. Yang ZH, Ji GD. Enantioselective degradation mechanism of beta-cpermethrin in soil from the perspective of functional genes. Chirality 2015;27:929-35. doi: 10.1002/chir.2250410.1002/chir.22504Open DOISearch in Google Scholar

148. De Albuquerque NCP, Carrão DB, Habenschus DB, de Oliveira ARM. Metabolism studies of chiral pesticides: A critical review. J Pharmaceut Biomed 2018;147:89-109. doi: 10.1016/j.jpba.2017.08.01110.1016/j.jpba.2017.08.011Open DOISearch in Google Scholar

149. He XM, Dong XW, Zou DH, Yu Y, Fang QY, Zhang Q, Zhao MR. Enantioselective effects of o,p′-DDT on cell invasion and adhesion of breast cancer cells: chirality in cancer development. Environ Sci Technol 2015;49:10028-37. doi: 10.1021/acs.est.5b0214710.1021/acs.est.5b02147Open DOISearch in Google Scholar

150. Chang J, Hao WY, Xu YY, Xu P, Li W, Li JZ, Wang HL. Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure. Environ Pollut 2018;232:300-9. doi: 10.1016/j.envpol.2017.09.07210.1016/j.envpol.2017.09.072Open DOISearch in Google Scholar

151. Wu C, Huang L, Tang S, Li Z, Ye Q. Enantioselective absorption and transformation of a novel chiral neonicotinoid [14C]-cycloxaprid in rats. Environ Pollut 2016;213:770-5. doi: 10.1016/j.envpol.2016.03.03710.1016/j.envpol.2016.03.037Open DOISearch in Google Scholar

152. Bendahou N, Bounias M, Fleche C. Toxicity of Cypermethrin and Fenitrothion on the Hemolymph Carbohydrates, Head Acetylcholinesterase, and Thoracic Muscle Na+, K+-ATPase of Emerging Honeybees (Apis mellifera mellifera. L). Ecotox Environ Safe 1999;44:139-46. doi: 10.1006/eesa.1999.181110.1006/eesa.1999.1811Open DOISearch in Google Scholar

153. Christen V, Fent K. Exposure of honeybees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ Pollut 2017;226:48-59. doi: 10.1016/j.envpol.2017.04.00310.1016/j.envpol.2017.04.003Open DOISearch in Google Scholar

154. Kunce W, Stoks R, Johansson F. Single and mixture impacts of two pyrethroids on damselfly predatory behavior and physiological biomarkers. Aquat Toxicol 2017;190:70-7. doi: 10.1016/j.aquatox.2017.06.02510.1016/j.aquatox.2017.06.025Open DOISearch in Google Scholar

155. Pristed MJS, Bundschuh M, Rasmussen JJ. Multiple exposure routes of a pesticide exacerbate effects on a grazing mayfly. Aquat Toxicol 2016;178:190-6. doi: 10.1016/j.aquatox.2016.08.00510.1016/j.aquatox.2016.08.005Open DOISearch in Google Scholar

156. Zanardi OZ, Bordini GP, Franco AA, Jacob CRO, Yamamoto PT. Sublethal effects of pyrethroid and neonicotinoid insecticides on Iphiseiodes zuluagai Denmark and Muma (Mesostigmata: Phytoseiidae). Ecotoxicology 2017;26:1188-98. doi: 10.1007/s10646-017-1844-x10.1007/s10646-017-1844-xOpen DOISearch in Google Scholar

157. Gutierrez Y, Tome HVV, Guedes RNC, Oliveira EE. Deltamethrin toxicity and impaired swimming behavior of two backswimmer species. Environ Toxicol Chem 2017;36:1235-42. doi: 10.1002/etc.364510.1002/etc.3645Open DOISearch in Google Scholar

158. Hoffmann KC, Deanovic L, Werner I, Stillway M, Fong S, Teh S. An analysis of lethal and sublethal interactions among type I and type II pyrethroid pesticide mixtures using standard Hyalella azteca water column toxicity tests. Environ Toxicol Chem 2016;35:2542-9. doi: 10.1002/etc.342210.1002/etc.3422Open DOISearch in Google Scholar

159. Gottardi M, Birch MR, Dalhoff K, Cedergreen N. The effects of epoxiconazole and α-cypermethrin on Daphnia magna growth, reproduction and offspring size. Environ Toxicol Chem 2017;36:2155-66. doi: 10.1002/etc.375210.1002/etc.3752Open DOISearch in Google Scholar

160. Hasenbein S, Lawler SP, Geist J, Connon RE. A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environ Toxicol Chem 2016;35:218-32. doi: 10.1002/etc.318710.1002/etc.3187Open DOISearch in Google Scholar

161. Cheng F, Li HZ, Qi HX, Han Q, You J. Contribution of pyrethroids in large urban rivers to sediment toxicity assessed with benthic invertebrates Chironomus dilutus: A case study in South China. Environ Toxicol Chem 2017;36:3367-75. doi: 10.1002/etc.391910.1002/etc.3919Open DOISearch in Google Scholar

162. Tu WQ, Xu C, Jin YX, Lu B, Lin CM, Wu YM, Liu WP. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico evidence. Aquat Toxicol 2016;175:39-46. doi: 10.1016/j.aquatox.2016.03.00610.1016/j.aquatox.2016.03.006Open DOISearch in Google Scholar

163. Fai PBA, Kinfack JST, Towa YJT. Acute effects of binary mixtures of Type II pyrethroids and organophosphate insecticides on Oreochromis niloticus. Ecotoxicology 2017;26:889-901. doi: 10.1007/s10646-017-1819-y10.1007/s10646-017-1819-yOpen DOISearch in Google Scholar

164. Radovanović TB, Nasia M, Krizmanić II, Prokić MD, Gavrić JP, Despotović SG, Gavrilović BR, Borković-Mitić SS, Pavlović SZ, Saičić ZS. Sublethal effects of the pyrethroid insecticide deltamethrin on oxidative stress parameters in green toad (Bufotes viridis L.). Environ Toxicol Chem 2017;36:2814-22. doi: 10.1002/etc.384910.1002/etc.3849Open DOISearch in Google Scholar

165. Chauhan LKS, Varshney M, Pandey V, Sharma P, Verma VK, Kumar P, Goel SK. ROS-dependent genotoxicity, cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos. Mutagenesis 2016;31:635-42. doi: 10.1093/mutage/gew03110.1093/mutage/gew031Open DOISearch in Google Scholar

166. Bardullas U, Sosa-Holt CS, Pato AM, Nemirovsky SI, Wolansky MJ. Evidence for effects on thermoregulation after acute oral exposure to type I and type II pyrethroids in infant rats. Neurotoxicol Teratol 2015;52:1-10. doi: 10.1016/j.ntt.2015.09.00510.1016/j.ntt.2015.09.005Open DOISearch in Google Scholar

167. Moser VC, Liu ZW, Schlosser C, Spanogle TL, Chandrasekaran A, McDaniel KL. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats. Toxicol Appl Pharm 2016;313:97-103.Search in Google Scholar

168. Wang P, Xu MY, Liang YJ, Wang HP, Sun YJ, Long DX, Wu YJ. Subchronic toxicity of low dose propoxur, permethrin, and their combination on the redox status of rat liver. Chemm-Biol Interact 2017;272:21-7. doi: 10.1016/j.cbi.2017.04.02310.1016/j.cbi.2017.04.023Open DOISearch in Google Scholar

169. Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R. Intergenerational effect of early life exposure to permethrin: changes in global DNA methylation and in Nurr1 gene expression. Toxics 2015;3:451-61. doi: 10.3390/toxics304045110.3390/toxics3040451Open DOISearch in Google Scholar

170. Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Phys C 2017;201:51-7. doi: 10.1016/j.cbpc.2017.09.00610.1016/j.cbpc.2017.09.006Open DOISearch in Google Scholar

171. Saillenfait AM, Ndiaye D, Sabate JP, Denis F, Antoine G, Robert A, Rouiller-Fabre V, Moison D. Evaluation of the effects of deltamethrin on the fetal rat testis. J Appl Toxicol 2016;36:1505-15. doi: 10.1002/jat.331010.1002/jat.3310Open DOISearch in Google Scholar

172. Syed F, John PJ, Soni I. Neurodevelopmental consequences of gestational and lactational exposure to pyrethroids in rats. Environ Toxicol 2016;31:1761-70. doi: 10.1002/tox.2217810.1002/tox.22178Open DOISearch in Google Scholar

173. Amaraneni M, Pang J, Mortuza TB, Muralidhara S, Cummings BS, White CA, Vorhees CV, Zastre J, Bruckner JV. Brain uptake of deltamethrin in rats as a function of plasma protein binding and blood-brain barrier maturation. Neurotoxicology 2017;62:24-9. doi: 10.1016/j.neuro.2017.04.00910.1016/j.neuro.2017.04.009Open DOISearch in Google Scholar

174. Madhubabu G, Yenugu S. Allethrin toxicity causes reproductive dysfunction in male rats. Environ Toxicol 2017;32:1701-10. doi: 10.1002/tox.22394Search in Google Scholar

175. Magby JP, Richardson JR. Role of calcium and calpain in the downregulation of voltage-gated sodium channel expression by the pyrethroid pesticide deltamethrin. J Biochem Mol Toxicol 2015;29:129-34. doi: 10.1002/jbt.2167610.1002/jbt.21676Open DOISearch in Google Scholar

176. Wang B, Liu JJ, Wang Y, Fu L, Shen R, Yu Z, Wang H, Chen YH, Zhang C, Meng XH, Xu DX. Maternal fenvalerate exposure induces fetal intrauterine growth restriction through disrupting placental thyroid hormone receptor signaling. Toxicol Sci 2017;157:377-86. doi: 10.1093/toxsci/kfx05210.1093/toxsci/kfx052Open DOISearch in Google Scholar

177. Ye XQ, Li FX, Zhang JY, Ma HH, Ji DP, Huang X, Curry TE, Liu WP, Liu J. Pyrethroid insecticide cypermethrin accelerates pubertal onset in male mice via disrupting hypothalamic-pituitary-gonadal axis. Environ Sci Technol 2017;51:10212-21. doi: 10.1021/acs.est.7b0273910.1021/acs.est.7b02739Open DOISearch in Google Scholar

178. Vardavas AI, Stivaktakis PD, Tzatzarakis MN, Fragkiadaki P, Vasilaki F, Tzardi M, Datseri G, Tsiaoussis J, Alegakis AK, Tsitsimpikou C, Rakitskii VN, Carvalho F, Tsatsakis AM. Long-term exposure to cypermethrin and piperonyl butoxide cause liver and kidney inflammation and induce genotoxicity in New Zealand white male rabbits. Food Chem Toxicol 2016;94:250-9. doi: 10.1016/j.fct.2016.06.01610.1016/j.fct.2016.06.016Open DOISearch in Google Scholar

179. Vidi PA, Anderson KA, Chen HY, Anderson R, Salvador-Moreno N, Mora DC, Poutasse C, Laurienti PJ, Daniel SS, Arcury TA. Personal samplers of bioavailable pesticides integrated with a hair follicle assay of DNA damage to assess environmental exposures and their associated risks in children. Mutat Res-Gen Tox En 2017;822:27-33. doi: 10.1016/j.mrgentox.2017.07.00310.1016/j.mrgentox.2017.07.003Open DOISearch in Google Scholar

180. Trueblood AB, Forrester MB, Han D, Shipp EM, Cizmas LH. Pesticide-related poison center exposures in children and adolescents aged ≤19 years in Texas, 2000-2013. Clin Toxicol 2016;54:852-6. doi: 10.1080/15563650.2016.120167610.1080/15563650.2016.1201676Open DOISearch in Google Scholar

181. Campos E, Da Silva VDP, De Mello MSC, Otero UB. Exposure topesticides and mental disorders in a rural population of Southern Brazil. Neurotoxicology 2016;56:7-16. doi: 10.1016/j.neuro.2016.06.00210.1016/j.neuro.2016.06.002Open DOISearch in Google Scholar

182. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. Neurotoxicology 2017;62:231-8. doi: 10.1016/j.neuro.2017.08.005Search in Google Scholar

183. Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, Ozonoff S, Ma CC, McCanlies EC, Bennett DH, Hertz-Picciotto I, Tancredi DJ, Volk HE. Combined prenatal pesticide exposure and folic acid intake in relation to autism spectrum disorder. Environ Health Persp 2017;125:097007. doi: 10.1289/EHP604Search in Google Scholar

184. Manyilizu WB, Mdegela RH, Kazwala R, Nonga H, Muller M, Lie E, Skjerve E, Lyche JL. Association of long-term pesticide exposure and biologic parameters in female farm workers in Tanzania: A cross sectional study. Toxics 2016;4:25. doi: 10.3390/toxics404002510.3390/toxics4040025Open DOISearch in Google Scholar

185. Botnariu G, Birsan C, Podoleanu C, Moldovan C, Stolnicu S, Chiriac A. Skin necrosis caused by prallethrin A worldwide used insecticide. Environ Toxicol Phar 2016;43:103-4. doi: 10.1016/j.etap.2016.03.00210.1016/j.etap.2016.03.002Open DOISearch in Google Scholar

186. Martenies SJ, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology 2017;307:66-73. doi: 10.1016/j.tox.2013.02.00510.1016/j.tox.2013.02.005Open DOISearch in Google Scholar

187. Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jørgensen N, Levine H, Hauser R, Swan SH, Chavarro JE. Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men. J Nutr 2017;146:1084-92. doi: 10.3945/jn.115.22656310.3945/jn.115.226563Open DOISearch in Google Scholar

188. Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W. Relationships of pyrethroid exposure with gonadotropin levels and pubertal development in Chinese boys. Environ Sci Technol 2017;51:6379-86. doi: 10.1021/acs.est.6b0598410.1021/acs.est.6b05984Open DOISearch in Google Scholar

189. Gupta S, Gupta R, Sharma S. Impact of pesticides on plant growth promotion of Vigna radiata and non-target microbes: comparison between chemical- and bio-pesticides. Ecotoxicology 2014;23:1015-21. doi: 10.1007/s10646-014-1245-310.1007/s10646-014-1245-3Open DOISearch in Google Scholar

190. Kreutzweiser DP, Capell SS, Scarr TA. Community-level responses by stream insects to neem products containing azadirachtin. Environ Toxicol Chem 2000;19:855-61. doi: 10.1002/etc.562019041110.1002/etc.5620190411Open DOISearch in Google Scholar

191. Kreutzweiser DP, Back RC, Sutton TM, Pangle KL, Thompson DG. Aquatic mesocosm assessments of a neem (azadirachtin) insecticide at environmentally realistic concentrations - 2: zooplankton community responses and recovery. Ecotoxicol Environ Safe 2004;59:194-204. doi: 10.1016/j.ecoenv.2003.09.00810.1016/j.ecoenv.2003.09.008Open DOISearch in Google Scholar

192. Kreutzweiser DP, Sutton TM, Back RC, Pangle KL, Thompson DG. Some ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities in forest pond enclosures. Aquat Toxicol 2004;67:239-54. doi: 10.1016/j.aquatox.2004.01.01110.1016/j.aquatox.2004.01.011Open DOISearch in Google Scholar

193. Kreutzweiser DP, Back RC, Sutton TM, Thompson DG, Scarr TA. Community-level disruptions among zooplankton of pond mesocosms treated with a neem (azadirachtin) insecticide. Aquat Toxicol 2002;56:257-73. doi: 10.1016/S0166-445X(01)00216-810.1016/S0166-445X(01)00216-8Open DOISearch in Google Scholar

194. Goktepe I, Plhak LC. Comparative toxicity of two azadirachtin-based neem pesticides to Daphnia pulex. Environ Toxicol Chem 2002;21:31-6. doi: 10.1002/etc.562021010510.1002/etc.5620210105Open DOISearch in Google Scholar

195. Barbosa WF, De Meyer L, Guedes RNC, Smagghe G. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). In: Oomen PA, Pistorius J, editors. Hazards of Pesticides to Bees: 12th international Symposium of the ICP-PR Bee Protection Group; 15-17 September 2014. Ghent, Belgium. Julius-Kühn-Archiv 2015;450:180-90.Search in Google Scholar

196. Scudeler EL, Garcia ASG, Padovani CR, Santos DC. Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae). Ecotox Environ Safe 2013;97:176-82. doi: 10.1016/j.ecoenv.2013.08.00810.1016/j.ecoenv.2013.08.008Open DOISearch in Google Scholar

197. Chandra P, Khuda-Bukhsh AR. Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotox Environ Safe 2004;58:194-201. doi: 10.1016/j.ecoenv.2004.01.01010.1016/j.ecoenv.2004.01.010Open DOISearch in Google Scholar

198. Murussi CR, Menezes CC, Nunes MEM, Araujo MDS, Quadros VA, Rosemberg DB, Loro VL. Azadirachtin, a neem-derived biopesticide, impairs behavioral and hematological parameters in carp (Cyprinus Carpio). Environ Toxicol 2016;31:1381-8. doi: 10.1002/tox.22143Search in Google Scholar

199. Maitra B, Sen S, Homechaudhuri S. Flow cytometric analysis of fish leukocytes as a model for toxicity produced by azadirachtin-based bioagrocontaminant. Toxicol Environ Chem 2014;96:328-41. doi: 10.1080/02772248.2014.93402610.1080/02772248.2014.934026Open DOISearch in Google Scholar

200. Kumar A, Prasad M, Suzuki N, Srivastav SK, Srivastav AK. Influence of a botanical pesticide, azadirachtin, on ultimobranchial gland of the freshwater catfish Heteropneustes fossilis. Toxicol Environ Chem 2013;95:1702-11. doi: 10.1080/02772248.2014.89536510.1080/02772248.2014.895365Open DOISearch in Google Scholar

201. Bernardi MM, Dias SG, Barbosa VE. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio). Environ Toxicol Phar 2013;36:1276-82. doi: 10.1016/j.etap.2013.10.00210.1016/j.etap.2013.10.002Open DOISearch in Google Scholar

202. Khan PK, Awasthy KS. Cytogenetic toxicity of neem. Food Chem Toxicol 2003;41:1325-8. doi: 10.1016/S0278-6915(03)00123-6Search in Google Scholar

203. Scott RH, O’Brien K, Roberts L, Mordue W, Mordue J. Extracellular and intracellular actions of azadirachtin on the electrophysiological properties of cultured rat DRG neurones. Comp Biochem Phys C 1999;123:85-93. doi: 10.1016/S0742-8413(99)00014-610.1016/S0742-8413(99)00014-6Open DOISearch in Google Scholar

204. Rahman MF, Siddiqui MKJ, Jamil K. Effects of Vepacide (Azadirachta indica) on aspartate and alanine aminotransferase profiles in a subchronic study with rats. Hum Exp Toxicol 2001;20:243-9. doi: 10.1191/09603270167822773010.1191/096032701678227730Open DOISearch in Google Scholar

205. Rahman MF, Siddiqui MKJ. Biochemical effects of Vepacide (from Azadirachta indica) on Wistar rats during subchronic exposure. Ecotox Environ Safe 2004;59:332-9. doi: 10.1016/j.ecoenv.2003.07.01310.1016/j.ecoenv.2003.07.013Open DOISearch in Google Scholar

206. Srivastava MK, Raizada RB. Assessment of embryo/fetotoxicity and teratogenicity of azadirachtin in rats. Food Chem Toxicol 2001;39:1023-7. doi: 10.1016/S0278-6915(01)00047-310.1016/S0278-6915(01)00047-3Open DOISearch in Google Scholar

207. Raizada RB, Srivastava MK, Kaushal RA, Singh RP. Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food Chem Toxicol 2001;39:477-83. doi: 10.1016/S0278-6915(00)00153-810.1016/S0278-6915(00)00153-8Open DOISearch in Google Scholar

208. Mosesso P, Bohm L, Pepe G, Fiore M, Carpinelli A, Gade G, Nagini S, Ottavianelli A, Degrassi F. Cytogenetic analyses of Azadirachtin reveal absence of genotoxicity but marked antiproliferative effects in human lymphocytes and CHO cells in vitro. Toxicol Lett 2012;213:361-6. doi: 10.1016/j.toxlet.2012.07.02110.1016/j.toxlet.2012.07.021Open DOISearch in Google Scholar

209. Mancebo A, Hernandez O, Gonzalez Y, Aldana L, Carballo O. Assessment of skin and eye irritation of 14 products under the stepwise approach of the OECD. Cutan Ocul Toxicol 2008;27:173-85. doi: 10.1080/1556952070171298410.1080/15569520701712984Open DOISearch in Google Scholar

210. Iyyadurai R, Surekha V, Sathyendra S, Wilson BP, Gopinath KG. Azadirachtin poisoning: a case report. Clin Toxicol 2010;48:857-8. doi: 10.3109/15563650.2010.518148Search in Google Scholar

211. Krupke CH, Holland JD, Long EY, Eitzer BD. Planting of neonicotinoid-treated maize poses risks for honeybees and other non-target organisms over a wide area without consistent crop yield benefit. J Appl Ecol 2017;54:1449-58. doi: 10.1111/1365-2664.1292410.1111/1365-2664.12924Open DOISearch in Google Scholar

212. Nakasu EY, Williamson SM, Edwards MG, Fitches EC, Gatehouse JA, Wright GA, Gatehouse AM. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proc Roy Soc B 2014;281:1787. doi: 10.1098/rspb.2014.061910.1098/rspb.2014.0619Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo