This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Manasterski J, Czajczyńska M. Leczenie. przewlekłego zapalenia zatok przynosowych. Hygeia Public Health. 2021; 56: 42–45.ManasterskiJCzajczyńskaMLeczenie. przewlekłego zapalenia zatok przynosowychHygeia Public Health2021564245Search in Google Scholar
Wang M, Zhang N, Zheng M, Li Y, Meng L, Ruan Y, Han J, Zhao N, Wang X, Zhang L, Bachert C. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol., 2019; 144: 1254–1264.WangMZhangNZhengMLiYMengLRuanYHanJZhaoNWangXZhangLBachertCCross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polypsJ. Allergy Clin. Immunol.201914412541264Search in Google Scholar
Woś J, Remjasz A. Inflammation of the nasal mucosa and paranasal sinuses. Pol. Otorhino. Rev., 2019; 8: 16–26.WośJRemjaszAInflammation of the nasal mucosa and paranasal sinusesPol. Otorhino. Rev.201981626Search in Google Scholar
Cohen NA, Widelitz JS, Chiu AG, Palmer JN, Kennedy DW. Familial aggregation of sinonasal polyps correlates with severity of disease. J. Otolaryngol. Head Neck Surg., 2006; 134: 601–604.CohenNAWidelitzJSChiuAGPalmerJNKennedyDWFamilial aggregation of sinonasal polyps correlates with severity of diseaseJ. Otolaryngol. Head Neck Surg.2006134601604Search in Google Scholar
Jani AL, Hamilos DL. Current thinking on the relationship between rhinosinusitis and asthma. J. Asthma. 2005; 42: 1–7.JaniALHamilosDLCurrent thinking on the relationship between rhinosinusitis and asthmaJ. Asthma.20054217Search in Google Scholar
Bachert C, Pawankar R, Zhang L, Bunnag C, Fokkens WJ, Hamilos DL, Jirapongsananuruk O, Kern R, Meltzer EO, Mullol J, Naclerio R, Pilan R, Rhee CS, Suzaki H, Voegels R, Blaiss M. ICON: chronic rhinosinusitis. World Allergy Organ J. 2014; 7: 25.BachertCPawankarRZhangLBunnagCFokkensWJHamilosDLJirapongsananurukOKernRMeltzerEOMullolJNaclerioRPilanRRheeCSSuzakiHVoegelsRBlaissMICON: chronic rhinosinusitisWorld Allergy Organ J.2014725Search in Google Scholar
Van Crombruggen K, Zhang N, Gevaert P, Tomassen P, Bachert C. Pathogenesis of chronic rhinosinusitis: Inflammation. J. Allergy Clin. Immunol. 2011; 128: 728–732.Van CrombruggenKZhangNGevaertPTomassenPBachertCPathogenesis of chronic rhinosinusitis: InflammationJ. Allergy Clin. Immunol.2011128728732Search in Google Scholar
Ryu G, Bae JS, Kim JH, Kim EH, Lyu L, Chung YJ, Mo J.H. Role of IL-17A in Chronic Rhinosinusitis with Nasal Polyp. Allergy Asthma Immunol. Res. 2020; 12: 507–522.RyuGBaeJSKimJHKimEHLyuLChungYJMoJ.H.Role of IL-17A in Chronic Rhinosinusitis with Nasal PolypAllergy Asthma Immunol. Res.202012507522Search in Google Scholar
Promsopa C, Kansara S, Citardi M.J, Fakhri S, Porter P, Luong A. Prevalence of confirmed asthma varies in chronic rhinosinusitis subtypes. Int. Forum Allergy Rhinol. 2016; 6:373–377.PromsopaCKansaraSCitardiM.J.FakhriSPorterPLuongAPrevalence of confirmed asthma varies in chronic rhinosinusitis subtypesInt. Forum Allergy Rhinol.20166373377Search in Google Scholar
Hopkins C. Chronic Rhinosinusitis with Nasal Polyps. N. Engl. J. Med., 2019; 381: 55–63;HopkinsC.Chronic Rhinosinusitis with Nasal PolypsN. Engl. J. Med.20193815563Search in Google Scholar
Min JY, Tan BK. Risk Factors For Chronic Rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 2015; 15: 1–13.MinJYTanBKRisk Factors For Chronic RhinosinusitisCurr. Opin. Allergy Clin. Immunol.201515113Search in Google Scholar
Manciula LG, Jeican II, Tudoran LB, Albu S. Biofilms and inflammation in patients with chronic rhinosinusitis. Med Pharm Rep. 2020; 93: 374–383.ManciulaLGJeicanIITudoranLBAlbuSBiofilms and inflammation in patients with chronic rhinosinusitisMed Pharm Rep.202093374383Search in Google Scholar
Aggarwal S, Ghilardi N, Xie M, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem., 2003; 278: 1910–1914.AggarwalSGhilardiNXieMde SauvageFJGurneyALInterleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17J. Biol. Chem.200327819101914Search in Google Scholar
Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Characteristics of T lymphocyte subpopulations. Postepy Hig. Med. Dosw. 2013; 67.Niedźwiedzka-RystwejPTokarz-DeptułaBDeptułaWCharacteristics of T lymphocyte subpopulationsPostepy Hig. Med. Dosw.201367Search in Google Scholar
Juszczak M, Głąbiński A. Udział limfocytów Th17 w patogenezie stwardnienia rozsianego. Postepy Hig. Med. Dosw. 2009; 63: 492–501.JuszczakMGłąbińskiAUdział limfocytów Th17 w patogenezie stwardnienia rozsianegoPostepy Hig. Med. Dosw.200963492501Search in Google Scholar
Romagnani S. Human Th17 cells. Arthritis Res. Ther. 2008; 10: 206.RomagnaniSHuman Th17 cellsArthritis Res. Ther.200810206Search in Google Scholar
Romagnani S, Maggi E, Liotta F, Cosmi L, Annunziato F. Properties and origin of human Th17 cells. Mol. Immunol. 2009; 47: 3–7.RomagnaniSMaggiELiottaFCosmiLAnnunziatoFProperties and origin of human Th17 cellsMol. Immunol.20094737Search in Google Scholar
Szulc-Dąbrowska L, Gieryńska M, Depczyńska D, Schollenberger A, Toka FN. Limfocyty Th17 w zakażeniach bakteryjnych. Postepy Hig. Med. Dosw. 2015; 69: 398–417.Szulc-DąbrowskaLGieryńskaMDepczyńskaDSchollenbergerATokaFNLimfocyty Th17 w zakażeniach bakteryjnychPostepy Hig. Med. Dosw.201569398417Search in Google Scholar
Singh SP, Zhang HH, Foley JF, Hedrick MN, Farber JM. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 2008; 180: 214–222.SinghSPZhangHHFoleyJFHedrickMNFarberJMHuman T cells that are able to produce IL-17 express the chemokine receptor CCR6J. Immunol.2008180214222Search in Google Scholar
Kostareva OS, Gabdulkhako AG, Kolyadenko IA, Garber MB, Tishchenko SV. Interleukin17: Functional and Structural Features, Application as a Therapeutic Target. Biochemistry. 2019; 84(Suppl 1): S193–S205.KostarevaOSGabdulkhakoAGKolyadenkoIAGarberMBTishchenkoSVInterleukin17: Functional and Structural Features, Application as a Therapeutic TargetBiochemistry.201984Suppl 1S193S205Search in Google Scholar
Winkler I, Gogacz M, Rechberger T. Do Th17 cells play an important role in the pathogenesis and prognosis of ovarian cancer? Ginekol. Pol. 2012; 83: 295–300.WinklerIGogaczMRechbergerTDo Th17 cells play an important role in the pathogenesis and prognosis of ovarian cancer?Ginekol. Pol.201283295300Search in Google Scholar
Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature. 2008; 453: 236–240.ZhouLLopesJEChongMMIvanovIIMinRVictoraGDShenYDuJRubtsovYPRudenskyAYZieglerSFLittmanDRTGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt functionNature.2008453236240Search in Google Scholar
Ye D, Wang Z, Ye J, Wang M, Liu J, Xu Y, Jiang H, Chen J, Wan J. Interleukin-5 levels are decreased in the plasma of coronary artery disease patients and inhibit Th1 and Th17 differentiation in vitro. Rev. Esp. Cardiol. 2020; 73: 393–402.YeDWangZYeJWangMLiuJXuYJiangHChenJWanJInterleukin-5 levels are decreased in the plasma of coronary artery disease patients and inhibit Th1 and Th17 differentiation in vitroRev. Esp. Cardiol.202073393402Search in Google Scholar
Liu H, Rohowsky-Kochan C. Interleukin-27-Mediated Suppression of Human Th17 Cells Is Associated with Activation of STAT1 and Suppressor of Cytokine Signaling Protein. J. Interferon Cytokine Res. 2011; 31: 459–469.LiuHRohowsky-KochanCInterleukin-27-Mediated Suppression of Human Th17 Cells Is Associated with Activation of STAT1 and Suppressor of Cytokine Signaling ProteinJ. Interferon Cytokine Res.201131459469Search in Google Scholar
Cooney LA, Towery K, Endres J, Fox DA. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J. Immunol. 2011; 187: 4440–4450.CooneyLAToweryKEndresJFoxDASensitivity and resistance to regulation by IL-4 during Th17 maturationJ. Immunol.201118744404450Search in Google Scholar
Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007; 56: 2936–2946.ChenZTatoCMMuulLLaurenceAO’SheaJJDistinct regulation of interleukin-17 in human T helper lymphocytesArthritis Rheum.20075629362946Search in Google Scholar
Wilson NJ, Boniface K, Chan JR, McKenzie B, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 2007; 8: 950–957.WilsonNJBonifaceKChanJRMcKenzieBBlumenscheinWMMattsonJDBashamBSmithKChenTMorelFLecronJCKasteleinRACuaDJMcClanahanTKBowmanEPde Waal MalefytRDevelopment, cytokine profile and function of human interleukin 17-producing helper T cellsNat. Immunol.20078950957Search in Google Scholar
Van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, Kapsenberg ML, de Jong EC. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007; 27: 1–10.Van BeelenAJZelinkovaZTaanman-KueterEWMullerFJHommesDWZaatSAKapsenbergMLde JongECStimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cellsImmunity.200727110Search in Google Scholar
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol. 2023; 20:1002–1022.WangJZhaoXWanYYIntricacies of TGF-β signaling in Treg and Th17 cell biologyCell Mol Immunol.20232010021022Search in Google Scholar
Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 1993; 150: 5445–5456.RouvierELucianiMFMatteiMGDenizotFGolsteinPCTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri geneJ. Immunol.199315054455456Search in Google Scholar
Meehan EV, Wang K. Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel). 2022; 13:1643.MeehanEVWangKInterleukin-17 Family Cytokines in Metabolic Disorders and CancerGenes (Basel).2022131643Search in Google Scholar
Sánchez-Rodríguez G, Puig L. Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies. Int J Mol Sci. 2023; 24:10305.Sánchez-RodríguezGPuigLPathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and SpondyloarthropathiesInt J Mol Sci.20232410305Search in Google Scholar
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol. 2022; 41: 475–516.HarrisKMClementsMAKwilaszAJWatkinsLRT cell transgressions: Tales of T cell form and function in diverse disease statesInt Rev Immunol.202241475516Search in Google Scholar
Meehan EV, Kepeng W. Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel). 2022; 13: 1643.MeehanEVKepengWInterleukin-17 Family Cytokines in Metabolic Disorders and CancerGenes (Basel).2022131643Search in Google Scholar
Liu X, Sun S, Liu D. IL-17D: A Less Studied Cytokine of IL-17 Family. Int. Arch. Allergy Immunol. 2020; 181: 618–623.LiuXSunSLiuDIL-17D: A Less Studied Cytokine of IL-17 FamilyInt. Arch. Allergy Immunol.2020181618623Search in Google Scholar
Kostareva OS, Gabdulkhako AG, Kolyadenko IA, Garber MB, Tishchenko SV. Interleukin17: Functional and Structural Features, Application as a Therapeutic Target. Biochemistry (Mosc). 2019; 84(Suppl 1): S193–S205.KostarevaOSGabdulkhakoAGKolyadenkoIAGarberMBTishchenkoSVInterleukin17: Functional and Structural Features, Application as a Therapeutic TargetBiochemistry (Mosc)201984Suppl 1S193S205Search in Google Scholar
Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J. Cutting edge: interleukin 17 signals through a heteromeric receptorcomplex, J. Immunol. 2006; 177: 3639.ToyDKuglerDWolfsonMVanden BosTGurgelJDerryJTockerJPeschonJCutting edge: interleukin 17 signals through a heteromeric receptorcomplexJ. Immunol.20061773639Search in Google Scholar
Ramirez Carrozzi V, Sambandam A, Luis E, Lin Z, Jeet S, Lesch J, Hackney J, Kim J, Zhou M, Lai J, Modrusan Z, Sai T, Lee W, Xu M, Caplazi P, Diehl L, de Voss J, Balazs M, Gonzalez L, Jr. Singh H, Ouyang W, Pappu R. IL17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol. 2011; 12: 11591166.Ramirez CarrozziVSambandamALuisELinZJeetSLeschJHackneyJKimJZhouMLaiJModrusanZSaiTLeeWXuMCaplaziPDiehlLde VossJBalazsMGonzalezLJrSinghHOuyangWPappuRIL17C regulates the innate immune function of epithelial cells in an autocrine mannerNat. Immunol.20111211591166Search in Google Scholar
Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor-based signaling and implications for disease. Nat Immunol. 2019; 20: 1594–1602.LiXBecharaRZhaoJMcGeachyMJGaffenSLIL-17 receptor-based signaling and implications for diseaseNat Immunol.20192015941602Search in Google Scholar
Rickel EA, Siegel LA, Yoon BRP, Rottman JB, Kugler DG, Swart DA, Anders PM, Tocker JE, Comeau MR, Budelsky AL. Identification of functional roles for both IL17RB and IL17RA in mediating IL25 induced activities. J. Immunol. 2008; 181: 42994310.RickelEASiegelLAYoonBRPRottmanJBKuglerDGSwartDAAndersPMTockerJEComeauMRBudelskyALIdentification of functional roles for both IL17RB and IL17RA in mediating IL25 induced activitiesJ. Immunol.200818142994310Search in Google Scholar
Shi Y, Ullrich SJ, Zhang J, Connolly K, Grzegorzewski KJ, Barber MC, Wang W, Wathen K, Hodge V, Fisher CL, Olsen H, Ruben SM, Knyazev I, Cho YH, Kao V, Wilkinson KA, Carrell JA, Ebner R. A novel cytokine receptorlig and pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem. 2000; 275: 1916719176.ShiYUllrichSJZhangJConnollyKGrzegorzewskiKJBarberMCWangWWathenKHodgeVFisherCLOlsenHRubenSMKnyazevIChoYHKaoVWilkinsonKACarrellJAEbnerRA novel cytokine receptorlig and pair. Identification, molecular characterization, and in vivo immunomodulatory activityJ. Biol. Chem.20002751916719176Search in Google Scholar
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol. 2018; 10: a028522.MoninLGaffenSLInterleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic ImplicationsCold Spring Harb Perspect Biol.201810a028522Search in Google Scholar
Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O’Shea JJ. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature. 2010; 467: 967–971.GhoreschiKLaurenceAYangXPTatoCMMcGeachyMJKonkelJERamosHLWeiLDavidsonTSBouladouxNGraingerJRChenQKannoYWatfordWTSunHWEberlGShevachEMBelkaidYCuaDJChenWO’SheaJJGeneration of pathogenic T(H)17 cells in the absence of TGF-β signallingNature.2010467967971Search in Google Scholar
Geremia A, Arancibia-Cárcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011; 208: 1127–1133.GeremiaAArancibia-CárcamoCVFlemingMPRustNSinghBMortensenNJTravisSPPowrieFIL-23-responsive innate lymphoid cells are increased in inflammatory bowel diseaseJ Exp Med.201120811271133Search in Google Scholar
Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, Gorman DM, Bowman EP, McClanahan TK, Yearley JH, Eberl G, Buckley CD, Kastelein RA, Pierce RH, Laface DM, Cua DJ. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8-entheseal resident T cells. Nat Med. 2012; 18: 1069–1076.SherlockJPJoyce-ShaikhBTurnerSPChaoCCSatheMGreinJGormanDMBowmanEPMcClanahanTKYearleyJHEberlGBuckleyCDKasteleinRAPierceRHLafaceDMCuaDJIL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8-entheseal resident T cellsNat Med.20121810691076Search in Google Scholar
Von Stebut E, Boehncke WH, Ghoreschi K, Gori T, Kaya Z, Thaci D, Schäffler A. IL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic Implications. Front Immunol. 2020; 10: 3096.Von StebutEBoehnckeWHGhoreschiKGoriTKayaZThaciDSchäfflerAIL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic ImplicationsFront Immunol.2020103096Search in Google Scholar
Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004; 21: 467–476.KollsJKLindénAInterleukin-17 family members and inflammationImmunity.200421467476Search in Google Scholar
Wróbel T, Mazur G, Lindner K, Ziółkowska J. IL−17 as a Mediator of Inflammation and Angiogenesis. Adv. Clin. Exp. Med. 2005; 14: 555–558.WróbelTMazurGLindnerKZiółkowskaJIL−17 as a Mediator of Inflammation and AngiogenesisAdv. Clin. Exp. Med.200514555558Search in Google Scholar
Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, Van Cauwenberge P, Bachert C. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J. Allergy Clin. Immunol. 2008; 122: 961–968.ZhangNVan ZeleTPerez-NovoCVan BruaeneNHoltappelsGDeRuyckNVan CauwenbergePBachertCDifferent types of T-effector cells orchestrate mucosal inflammation in chronic sinus diseaseJ. Allergy Clin. Immunol.2008122961968Search in Google Scholar
Derycke L, Zhang N, Holtappels G, Dutré T, Bachert C. IL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J. Cyst. Fibros. 2012; 11: 193–200.DeryckeLZhangNHoltappelsGDutréTBachertCIL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosisJ. Cyst. Fibros.201211193200Search in Google Scholar
Wang M, Zhang N, Zheng M, Li Y, Meng L, Ruan Y, Ruan Y, Han J, Zhao N, Wang X, Zhang L, Bachert C. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019; 144: 1254–1264.WangMZhangNZhengMLiYMengLRuanYRuanYHanJZhaoNWangXZhangLBachertCCross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polypsJ. Allergy Clin. Immunol.201914412541264Search in Google Scholar
Van Bruaene N, Perez Novo C, Deruyck N, Holtappels G, Van Cauwenberge P, Bachert C. Inflammation and remodeling patterns in early-stage chronic rhinosinusitis. Clin. Exp. Allergy. 2012; 42: 883–890.Van BruaeneNPerez NovoCDeruyckNHoltappelsGVan CauwenbergePBachertCInflammation and remodeling patterns in early-stage chronic rhinosinusitisClin. Exp. Allergy.201242883890Search in Google Scholar
Ramezanpour M, Moraitis S, Smith JLP, Wormald PJ, Vreugde S. Th17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic Rhinosinusitis. Mediators Inflamm. 2016; 2016: 9798206.RamezanpourMMoraitisSSmithJLPWormaldPJVreugdeSTh17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic RhinosinusitisMediators Inflamm.201620169798206Search in Google Scholar
Jiang XD, Li GY, Li L, Dong Z, Zhu DD. The Characterization of IL-17A Expression in Patients with Chronic Rhinosinusitis with Nasal Polyps. Am. J. Rhinol. Allergy. 2011; 25: e171–175.JiangXDLiGYLiLDongZZhuDDThe Characterization of IL-17A Expression in Patients with Chronic Rhinosinusitis with Nasal PolypsAm. J. Rhinol. Allergy.201125e171175Search in Google Scholar
Makihara S, Okano M, Fujiwara T, Kariya S, Noda Y, Higaki T, Nishizaki K. Regulation and characterization of IL-17A expression in patients with chronic rhinosinusitis and its relationship with eosinophilic inflammation. J. Allergy Clin. Immunol. 2010; 126: 397–400.MakiharaSOkanoMFujiwaraTKariyaSNodaYHigakiTNishizakiKRegulation and characterization of IL-17A expression in patients with chronic rhinosinusitis and its relationship with eosinophilic inflammationJ. Allergy Clin. Immunol.2010126397400Search in Google Scholar
Saitoh T, Kusunoki T, Yao T, Kawano K, Kojima Y, Miyahara K, Onoda J, Yokoi H, Ikeda K. Role of Interleukin-17A in the Eosinophil Accumulation and Mucosal Remodeling in Chronic Rhinosinusitis with Nasal Polyps Associated with Asthma. Int. Arch. Allergy Immunol. 2010; 151: 8–16.SaitohTKusunokiTYaoTKawanoKKojimaYMiyaharaKOnodaJYokoiHIkedaKRole of Interleukin-17A in the Eosinophil Accumulation and Mucosal Remodeling in Chronic Rhinosinusitis with Nasal Polyps Associated with AsthmaInt. Arch. Allergy Immunol.2010151816Search in Google Scholar
Hu XD, Bao YY, Zhou SH, Yao HT, Mao JY, Ji XX, Wu XH. Interleukin-17A expression in patients with chronic rhinosinusitis and its relationship with clinical features. J. Int. Med. Res. 2013; 41: 777–784.HuXDBaoYYZhouSHYaoHTMaoJYJiXXWuXHInterleukin-17A expression in patients with chronic rhinosinusitis and its relationship with clinical featuresJ. Int. Med. Res.201341777784Search in Google Scholar
Chapurin N, Li P, Chandra RK, Turner JH, Chowdhury NI. Elevated mucus interleukin-17A levels are associated with increased prior sinus surgery for chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2021; 11: 120–127.ChapurinNLiPChandraRKTurnerJHChowdhuryNIElevated mucus interleukin-17A levels are associated with increased prior sinus surgery for chronic rhinosinusitisInt. Forum Allergy Rhinol.202111120127Search in Google Scholar