Open Access

How high-risk HPV induces an optimal environment for own replication in the differentiating epithelium


Cite

Egawa N., Egawa K., Griffin H., Doorbar J.: Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses, 2015; 7: 3863-3890Egawa N. Egawa K. Griffin H. Doorbar J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia Viruses 2015 7 3863 389010.3390/v7072802451713126193301Search in Google Scholar

Chan C.K., Aimagambetova G., Ukybassova T., Kongrtay K., Azizan A.: Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination – review of current perspectives. J. Oncol., 2019; 2019: 3257939Chan C.K. Aimagambetova G. Ukybassova T. Kongrtay K. Azizan A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination – review of current perspectives J. Oncol 2019 2019 325793910.1155/2019/3257939681195231687023Search in Google Scholar

DiGiuseppe S., Bienkowska-Haba M., Guion L.G., Sapp M.: Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus. Virus Res., 2017; 231: 1-9DiGiuseppe S. Bienkowska-Haba M. Guion L.G. Sapp M. Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus Virus Res 2017 231 1 910.1016/j.virusres.2016.10.015532578527984059Search in Google Scholar

International Agency for Research on Cancer: IARC monographs on the evaluation of carcinogenic risks to humans. Biologica agents, volume 100 B, A review of human carcinogenesis. International Agency for Research on Cancer, Lyon 2012International Agency for Research on Cancer IARC monographs on the evaluation of carcinogenic risks to humans. Biologica agents, volume 100 B, A review of human carcinogenesis International Agency for Research on Cancer, Lyon 2012Search in Google Scholar

Doorbar J., Quint W., Banks L., Bravo I.G., Stoler M., Broker T.R., Stanley M.A.: The biology and life-cycle of human papillomaviruses. Vaccine, 2012; 30: F55-F70Doorbar J. Quint W. Banks L. Bravo I.G. Stoler M. Broker T.R. Stanley M.A. The biology and life-cycle of human papillomaviruses Vaccine 2012 30 F55 F7010.1016/j.vaccine.2012.06.08323199966Search in Google Scholar

Gillison M.L., Chaturvedi A.K., Anderson W.F., Fakhry C.: Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol., 2015; 33: 3235-3242Gillison M.L. Chaturvedi A.K. Anderson W.F. Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma J. Clin. Oncol 2015 33 3235 324210.1200/JCO.2015.61.6995497908626351338Search in Google Scholar

Osazuwa-Peters N., Massa S.T., Simpson M.C., Adjei Boakye E., Varvares M.A.: Survival of human papillomavirus-associated cancers: Filling in the gaps. Cancer, 2018; 124: 18-20Osazuwa-Peters N. Massa S.T. Simpson M.C. Adjei Boakye E. Varvares M.A. Survival of human papillomavirus-associated cancers: Filling in the gaps Cancer 2018 124 18 2010.1002/cncr.3094529105739Search in Google Scholar

Khallouf H., Grabowska A.K., Riemer A.B.: Therapeutic vaccine strategies against human papillomavirus. Vaccines, 2014; 2: 422462Khallouf H. Grabowska A.K. Riemer A.B. Therapeutic vaccine strategies against human papillomavirus Vaccines 2014 2 42246210.3390/vaccines2020422449425726344626Search in Google Scholar

Wright T.C. Jr., Massad L.S., Dunton C.J., Spitzer M., Wilkinson E.J., Solomon D., 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference: 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am. J. Obstet. Gynecol., 2007; 197: 346-355Wright T.C. Jr. Massad L.S. Dunton C.J. Spitzer M. Wilkinson E.J. Solomon D. 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests Am. J. Obstet. Gynecol 2007 197 346 35510.1016/j.ajog.2007.07.04717904957Search in Google Scholar

Burley M., Roberts S., Parish J.L.: Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Sem. Immunopathol., 2020; 42: 159-171Burley M. Roberts S. Parish J.L. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle Sem. Immunopathol 2020 42 159 17110.1007/s00281-019-00773-0717425531919577Search in Google Scholar

McBride A.A.: Oncogenic human papillomaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017; 372: 20160273McBride A.A. Oncogenic human papillomaviruses Philos. Trans. R. Soc. Lond. B Biol. Sci 2017 372 2016027310.1098/rstb.2016.0273559774028893940Search in Google Scholar

McBride A.A.: The papillomavirus E2 proteins. Virology, 2013; 445: 57-79McBride A.A. The papillomavirus E2 proteins Virology 2013 445 57 7910.1016/j.virol.2013.06.006378356323849793Search in Google Scholar

Bergvall M., Melendy T., Archambault J.: The E1 proteins. Virology, 2013; 445: 35-56Bergvall M. Melendy T. Archambault J. The E1 proteins Virology 2013 445 35 5610.1016/j.virol.2013.07.020381110924029589Search in Google Scholar

Graham S.V.: Keratinocyte differentiation-dependent human papillomavirus gene regulation. Viruses, 2017; 9: 245Graham S.V. Keratinocyte differentiation-dependent human papillomavirus gene regulation Viruses 2017 9 24510.3390/v9090245561801128867768Search in Google Scholar

Laaneväli A., Ustav M., Ustav E., Piirsoo M.: E2 protein is the major determinant of specificity at the human papillomavirus origin of replication. PLoS One, 2019; 14: e0224334Laaneväli A. Ustav M. Ustav E. Piirsoo M. E2 protein is the major determinant of specificity at the human papillomavirus origin of replication PLoS One 2019 14 e022433410.1371/journal.pone.0224334680843731644607Search in Google Scholar

Sitz J., Blanchet S.A., Gameiro S.F., Biquand E., Morgan T.M., Galloy M., Dessapt J., Lavoie E.G., Blondeau A., Smith B.C. i wsp.: Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc. Natl. Acad. Sci. USA, 2019; 116: 19552-19562Sitz J. Blanchet S.A. Gameiro S.F. Biquand E. Morgan T.M. Galloy M. Dessapt J. Lavoie E.G. Blondeau A. Smith B.C. i wsp. Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response Proc. Natl. Acad. Sci. USA 2019 116 19552 1956210.1073/pnas.1906102116676526431501315Search in Google Scholar

Squarzanti D.F., Sorrentino R., Landini M.M., Chiesa A., Pinato S., Rocchio F., Mattii M., Penengo L., Azzimonti B.: Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: New insights for the virus-induced DNA damage response. Virol. J., 2018; 15: 176Squarzanti D.F. Sorrentino R. Landini M.M. Chiesa A. Pinato S. Rocchio F. Mattii M. Penengo L. Azzimonti B. Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: New insights for the virus-induced DNA damage response Virol. J 2018 15 17610.1186/s12985-018-1086-4624026630445982Search in Google Scholar

Doorbar J.: The E4 protein; structure, function and patterns of expression. Virology, 2013; 445: 80-98Doorbar J. The E4 protein; structure, function and patterns of expression Virology 2013 445 80 9810.1016/j.virol.2013.07.00824016539Search in Google Scholar

DiMaio D., Petti L.M.: The E5 proteins. Virology, 2013; 445: 99114DiMaio D. Petti L.M. The E5 proteins Virology 2013 445 9911410.1016/j.virol.2013.05.006377295923731971Search in Google Scholar

Dreer M., van de Poel S., Stubenrauch F.: Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res., 2017; 231: 96-102Dreer M. van de Poel S. Stubenrauch F. Control of viral replication and transcription by the papillomavirus E8^E2 protein Virus Res 2017 231 96 10210.1016/j.virusres.2016.11.00527825778Search in Google Scholar

Zhang W., Kazakov T., Popa A., DiMaio D.: Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity. mBio, 2014; 5: e01777-14Zhang W. Kazakov T. Popa A. DiMaio D. Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity mBio 2014 5 e01777 1410.1128/mBio.01777-14417207825227470Search in Google Scholar

DiGiuseppe S., Luszczek W., Keiffer T.R., Bienkowska-Haba M., Guion L.G., Sapp M.J.: Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc. Natl. Acad. Sci. USA, 2016; 113: 6289-6294DiGiuseppe S. Luszczek W. Keiffer T.R. Bienkowska-Haba M. Guion L.G. Sapp M.J. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis Proc. Natl. Acad. Sci. USA 2016 113 6289 629410.1073/pnas.1600638113489670227190090Search in Google Scholar

Aydin I., Weber S., Snijder B., Ventayol P.S., Kühbacher A., Becker M., Day P.M., Schiller J.T., Kann M., Pelkmans L. i wsp.: Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog, 2014; 10: e1004162Aydin I. Weber S. Snijder B. Ventayol P.S. Kühbacher A. Becker M. Day P.M. Schiller J.T. Kann M. Pelkmans L. i wsp. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses PLoS Pathog 2014 10 e100416210.1371/journal.ppat.1004162403862824874089Search in Google Scholar

Everett R.D.: The spatial organization of DNA virus genomes in the nucleus. PLoS Pathog, 2013; 9: e1003386Everett R.D. The spatial organization of DNA virus genomes in the nucleus PLoS Pathog 2013 9 e100338610.1371/journal.ppat.1003386369485423825941Search in Google Scholar

McBride A.A.: Mechanisms and strategies of papillomavirus replication. Biol. Chem., 2017; 398: 919-927McBride A.A. Mechanisms and strategies of papillomavirus replication Biol. Chem 2017 398 919 92710.1515/hsz-2017-011328315855Search in Google Scholar

Moody C.A., Laimins L.A.: Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer, 2010; 10: 550-560Moody C.A. Laimins L.A. Human papillomavirus oncoproteins: Pathways to transformation Nat. Rev. Cancer 2010 10 550 56010.1038/nrc288620592731Search in Google Scholar

Sanders C.M., Stenlund A.: Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex. J. Biol. Chem., 2000; 275: 3522-3534Sanders C.M. Stenlund A. Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex J. Biol. Chem 2000 275 3522 353410.1074/jbc.275.5.352210652347Search in Google Scholar

Westrich J.A., Warren C.J., Pyeon D.: Evasion of host immune defenses by human papillomavirus. Virus Res., 2017; 231: 21-33Westrich J.A. Warren C.J. Pyeon D. Evasion of host immune defenses by human papillomavirus Virus Res 2017 231 21 3310.1016/j.virusres.2016.11.023532578427890631Search in Google Scholar

Smith J.A., White E.A., Sowa M.E., Powell M.L., Ottinger M., Harper J.W., Howley P.M.: Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc. Natl. Acad. Sci. USA, 2010; 107: 3752-3757Smith J.A. White E.A. Sowa M.E. Powell M.L. Ottinger M. Harper J.W. Howley P.M. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression Proc. Natl. Acad. Sci. USA 2010 107 3752 375710.1073/pnas.0914818107284051520133580Search in Google Scholar

Graham S.V.: The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci., 2017; 131: 2201-2221Graham S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review Clin. Sci 2017 131 2201 222110.1042/CS2016078628798073Search in Google Scholar

Gunasekharan V.K., Li Y., Andrade J., Laimins L.A.: Post-transcriptional regulation of KLF4 by high-risk human papillomaviruses is necessary for the differentiation-dependent viral life cycle. PLoS Pathog., 2016; 12: e1005747Gunasekharan V.K. Li Y. Andrade J. Laimins L.A. Post-transcriptional regulation of KLF4 by high-risk human papillomaviruses is necessary for the differentiation-dependent viral life cycle PLoS Pathog 2016 12 e100574710.1371/journal.ppat.1005747493667727386862Search in Google Scholar

Davy C., McIntosh P., Jackson D.J., Sorathia R., Miell M., Wang Q., Khan J., Soneji Y., Doorbar J.: A novel interaction between the human papillomavirus type 16 E2 and E1^ E4 proteins leads to stabilization of E2. Virology, 2009; 394: 266-275Davy C. McIntosh P. Jackson D.J. Sorathia R. Miell M. Wang Q. Khan J. Soneji Y. Doorbar J. A novel interaction between the human papillomavirus type 16 E2 and E1^ E4 proteins leads to stabilization of E2 Virology 2009 394 266 27510.1016/j.virol.2009.08.03519783272Search in Google Scholar

Egawa N., Wang Q., Griffin H.M., Murakami I., Jackson D., Mahmood R., Doorbar J.: HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLOS Pathog., 2017; 13: e1006282Egawa N. Wang Q. Griffin H.M. Murakami I. Jackson D. Mahmood R. Doorbar J. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions PLOS Pathog 2017 13 e100628210.1371/journal.ppat.1006282537139128306742Search in Google Scholar

Prescott E.L., Brimacombe C.L., Hartley M., Bell I., Graham S., Roberts S.: Human papillomavirus type 1 E1^ E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2. J. Virol., 2014; 88: 1259912611Prescott E.L. Brimacombe C.L. Hartley M. Bell I. Graham S. Roberts S. Human papillomavirus type 1 E1^ E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2 J. Virol 2014 88 125991261110.1128/JVI.02029-14424892525142587Search in Google Scholar

Ashrafi G.H., Haghshenas M., Marchetti B., Campo M.S.: E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer, 2006; 119: 2105-2112Ashrafi G.H. Haghshenas M. Marchetti B. Campo M.S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain Int. J. Cancer 2006 119 2105 211210.1002/ijc.2208916823848Search in Google Scholar

Wetherill L.F., Holmes K.K., Verow M., Müller M., Howell G., Harris M., Fishwick C., Stonehouse N., Foster R., Blair G.E. i wsp.: High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J. Virol., 2012; 86: 5341-5351Wetherill L.F. Holmes K.K. Verow M. Müller M. Howell G. Harris M. Fishwick C. Stonehouse N. Foster R. Blair G.E. i wsp. High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors J. Virol 2012 86 5341 535110.1128/JVI.06243-11334735122357280Search in Google Scholar

Graham S.V.: Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol., 2010; 5: 1493-1506Graham S.V. Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies Future Microbiol 2010 5 1493 150610.2217/fmb.10.107352789121073310Search in Google Scholar

Sakakibara N., Chen D., McBride A.A.: Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog., 2013; 9: e1003321Sakakibara N. Chen D. McBride A.A. Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells PLoS Pathog 2013 9 e100332110.1371/journal.ppat.1003321370171423853576Search in Google Scholar

Banerjee N.S., Wang H.K., Broker T.R., Chow L.T.: Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J. Biol. Chem., 2011; 286: 15473-15482Banerjee N.S. Wang H.K. Broker T.R. Chow L.T. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes J. Biol. Chem 2011 286 15473 1548210.1074/jbc.M110.197574308322421321122Search in Google Scholar

Yuan C.H., Filippova M., Duerksen-Hughes P.: Modulation of apoptotic pathways by human papillomaviruses (HPV): Mechanisms and implications for therapy. Viruses, 2012; 4: 3831-3850Yuan C.H. Filippova M. Duerksen-Hughes P. Modulation of apoptotic pathways by human papillomaviruses (HPV): Mechanisms and implications for therapy Viruses 2012 4 3831 385010.3390/v4123831352829323250450Search in Google Scholar

Songock W.K., Kim S.M., Bodily J.M.: The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res., 2017; 231: 56-75Songock W.K. Kim S.M. Bodily J.M. The human papillomavirus E7 oncoprotein as a regulator of transcription Virus Res 2017 231 56 7510.1016/j.virusres.2016.10.017532577627818212Search in Google Scholar

Roman A., Munger K.: The papillomavirus E7 proteins. Virology, 2013; 445: 138-168Roman A. Munger K. The papillomavirus E7 proteins Virology 2013 445 138 16810.1016/j.virol.2013.04.013378357923731972Search in Google Scholar

Kho E.Y., Wang H.K., Banerjee N.S., Broker T.R., Chow L.T.: HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures. Proc. Natl. Acad. Sci. USA, 2013; 110: 7542-7549Kho E.Y. Wang H.K. Banerjee N.S. Broker T.R. Chow L.T. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures Proc. Natl. Acad. Sci. USA 2013 110 7542 754910.1073/pnas.1304855110365146523572574Search in Google Scholar

White E.A., Kramer R.E., Tan M.J., Hayes S.D., Harper J.W., Howley P.M.: Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J. Virol., 2012; 86: 1317413186White E.A. Kramer R.E. Tan M.J. Hayes S.D. Harper J.W. Howley P.M. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity J. Virol 2012 86 131741318610.1128/JVI.02172-12350313723015706Search in Google Scholar

Basukala O., Sarabia-Vega V., Banks L.: Human papillomavirus oncoproteins and post-translational modifications: Generating multifunctional hubs for overriding cellular homeostasis. Biol. Chem., 2020; 401: 585-599Basukala O. Sarabia-Vega V. Banks L. Human papillomavirus oncoproteins and post-translational modifications: Generating multifunctional hubs for overriding cellular homeostasis Biol. Chem 2020 401 585 59910.1515/hsz-2019-040831913845Search in Google Scholar

Pacini L., Savini C., Ghittoni R., Saidj D., Lamartine J., Hasan U.A., Accardi R., Tommasino M.: Downregulation of Toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. J. Virol., 2015; 89: 11396-11405Pacini L. Savini C. Ghittoni R. Saidj D. Lamartine J. Hasan U.A. Accardi R. Tommasino M. Downregulation of Toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control J. Virol 2015 89 11396 1140510.1128/JVI.02151-15464568026339055Search in Google Scholar

Ganguly N., Parihar S.P.: Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J. Biosci., 2009; 34: 113-123Ganguly N. Parihar S.P. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis J. Biosci 2009 34 113 12310.1007/s12038-009-0013-719430123Search in Google Scholar

Reiser J., Hurst J., Voges M., Krauss P., Münch P., Iftner T., Stubenrauch F.: High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J. Virol., 2011; 85: 11372-11380Reiser J. Hurst J. Voges M. Krauss P. Münch P. Iftner T. Stubenrauch F. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression J. Virol 2011 85 11372 1138010.1128/JVI.05279-11319495821849431Search in Google Scholar

James C.D., Roberts S.: Viral interactions with PDZ domain-containing proteins – an oncogenic trait? Pathogens, 2016; 5: 8James C.D. Roberts S. Viral interactions with PDZ domain-containing proteins – an oncogenic trait? Pathogens 2016 5 810.3390/pathogens5010008481012926797638Search in Google Scholar

Schmitt M., Dalstein V., Waterboer T., Clavel C., Gissmann L., Pawlita M.: The HPV16 transcriptome in cervical lesions of different grades. Mol. Cell. Probes, 2011; 25: 260-265Schmitt M. Dalstein V. Waterboer T. Clavel C. Gissmann L. Pawlita M. The HPV16 transcriptome in cervical lesions of different grades Mol. Cell. Probes 2011 25 260 26510.1016/j.mcp.2011.05.00321664454Search in Google Scholar

Wongworawat Y.C., Filippova M., Williams V.M., Filippov V., Duerksen-Hughes P.J.: Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes. Am. J. Cancer Res., 2016; 6: 764-780Wongworawat Y.C. Filippova M. Williams V.M. Filippov V. Duerksen-Hughes P.J. Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes Am. J. Cancer Res 2016 6 764 780Search in Google Scholar

Heino P., Zhou J., Lambert P.F.: Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 2000; 276: 304-314Heino P. Zhou J. Lambert P.F. Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2 Virology 2000 276 304 31410.1006/viro.2000.034211040122Search in Google Scholar

Wang J.W., Roden R.B.: L2, the minor capsid protein of papillomavirus. Virology, 2013; 445: 175-186Wang J.W. Roden R.B. L2, the minor capsid protein of papillomavirus Virology 2013 445 175 18610.1016/j.virol.2013.04.017377080023689062Search in Google Scholar

Bodily J.M., Hennigan C., Wrobel G.A., Rodriguez C.M.: Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology, 2013; 443: 11-19Bodily J.M. Hennigan C. Wrobel G.A. Rodriguez C.M. Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle Virology 2013 443 11 1910.1016/j.virol.2013.04.033578980423725693Search in Google Scholar

Grm H.S., Massimi P., Gammoh N., Banks L.: Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene, 2005; 24: 5149-5164Grm H.S. Massimi P. Gammoh N. Banks L. Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein Oncogene 2005 24 5149 516410.1038/sj.onc.120870115856010Search in Google Scholar

Friedman R.C., Farh K.K., Burge C.B., Bartel D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009; 19: 92-105Friedman R.C. Farh K.K. Burge C.B. Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs Genome Res 2009 19 92 10510.1101/gr.082701.108261296918955434Search in Google Scholar

Graham S.V., Faizo A.A.: Control of human papillomavirus gene expression by alternative splicing. Virus Res., 2017; 231: 83-95Graham S.V. Faizo A.A. Control of human papillomavirus gene expression by alternative splicing Virus Res 2017 231 83 9510.1016/j.virusres.2016.11.016533590527867028Search in Google Scholar

Li Y., Cai Q., Lin L., Xu C.: MiR-875 and miR-3144 switch the human papillomavirus 16 E6/E6* mRNA ratio through the EGFR pathway and a direct targeting effect. Gene, 2018; 679: 389-397Li Y. Cai Q. Lin L. Xu C. MiR-875 and miR-3144 switch the human papillomavirus 16 E6/E6* mRNA ratio through the EGFR pathway and a direct targeting effect Gene 2018 679 389 39710.1016/j.gene.2018.09.01530205176Search in Google Scholar

Chirayil R., Kincaid R.P., Dahlke C., Kuny C.V., Dälken N., Spohn M., Lawson B., Grundhoff A., Sullivan C.S.: Identification of virusencoded microRNAs in divergent papillomaviruses. PLoS Pathog., 2018; 14: e1007156Chirayil R. Kincaid R.P. Dahlke C. Kuny C.V. Dälken N. Spohn M. Lawson B. Grundhoff A. Sullivan C.S. Identification of virusencoded microRNAs in divergent papillomaviruses PLoS Pathog 2018 14 e100715610.1371/journal.ppat.1007156606214730048533Search in Google Scholar

Qian K., Pietilä T., Rönty M., Michon F., Frilander M.J., Ritari J., Tarkkanen J., Paulín L., Auvinen P., Auvinen E.: Identification and validation of human papillomavirus encoded microRNAs. PLoS One, 2013; 8: e70202Qian K. Pietilä T. Rönty M. Michon F. Frilander M.J. Ritari J. Tarkkanen J. Paulín L. Auvinen P. Auvinen E. Identification and validation of human papillomavirus encoded microRNAs PLoS One 2013 8 e7020210.1371/journal.pone.0070202372818423936163Search in Google Scholar

Li Y., Liu J., Yuan C., Cui B., Zou X., Qiao Y.: High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J. Int. Med. Res., 2010; 38: 1730-1736Li Y. Liu J. Yuan C. Cui B. Zou X. Qiao Y. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia J. Int. Med. Res 2010 38 1730 173610.1177/14732300100380051821309487Search in Google Scholar

Wang X., Wang H.K., McCoy J.P., Banerjee N.S., Rader J.S., Broker T.R., Meyers C., Chow L.T., Zheng Z.M.: Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA, 2009; 15: 637-647Wang X. Wang H.K. McCoy J.P. Banerjee N.S. Rader J.S. Broker T.R. Meyers C. Chow L.T. Zheng Z.M. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6 RNA 2009 15 637 64710.1261/rna.1442309266182419258450Search in Google Scholar

Melar-New M., Laimins L.A.: Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol., 2010; 84: 5212-5221Melar-New M. Laimins L.A. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins J. Virol 2010 84 5212 522110.1128/JVI.00078-10286379720219920Search in Google Scholar

Ofir M., Hacohen D., Ginsberg D.: MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol. Cancer Res., 2011; 9: 440-447Ofir M. Hacohen D. Ginsberg D. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E Mol. Cancer Res 2011 9 440 44710.1158/1541-7786.MCR-10-034421454377Search in Google Scholar

Wang X., Wang H.K., Li Y., Hafner M., Banerjee N.S., Tang S., Briskin D., Meyers C., Chow L.T., Xie X. i wsp.: microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA, 2014; 111: 4262-4267Wang X. Wang H.K. Li Y. Hafner M. Banerjee N.S. Tang S. Briskin D. Meyers C. Chow L.T. Xie X. i wsp. microRNAs are biomarkers of oncogenic human papillomavirus infections Proc. Natl. Acad. Sci. USA 2014 111 4262 426710.1073/pnas.1401430111396409224591631Search in Google Scholar

Honegger A., Schilling D., Bastian S., Sponagel J., Kuryshev V., Sültmann H., Scheffner M., Hoppe-Seyler K., Hoppe-Seyler F.: Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog, 2015; 11: e1004712Honegger A. Schilling D. Bastian S. Sponagel J. Kuryshev V. Sültmann H. Scheffner M. Hoppe-Seyler K. Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells PLoS Pathog 2015 11 e100471210.1371/journal.ppat.1004712435651825760330Search in Google Scholar

Gunasekharan V., Laimins L.A.: Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J. Virol., 2013; 87: 6037-6043Gunasekharan V. Laimins L.A. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification J. Virol 2013 87 6037 604310.1128/JVI.00153-13364814823468503Search in Google Scholar

Maréchal A., Zou L.: DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol., 2013; 5: a012716Maréchal A. Zou L. DNA damage sensing by the ATM and ATR kinases Cold Spring Harb. Perspect. Biol 2013 5 a01271610.1101/cshperspect.a012716375370724003211Search in Google Scholar

Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R.3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y. i wsp.: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 2007; 316: 1160-1166Matsuoka S. Ballif B.A. Smogorzewska A. McDonald E.R.3rd Hurov K.E. Luo J. Bakalarski C.E. Zhao Z. Solimini N. Lerenthal Y. i wsp. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage Science 2007 316 1160 116610.1126/science.114032117525332Search in Google Scholar

Blackford A.N., Jackson S.P.: ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol. Cell, 2017; 66: 801-817Blackford A.N. Jackson S.P. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response Mol. Cell 2017 66 801 81710.1016/j.molcel.2017.05.01528622525Search in Google Scholar

Nam E.A., Cortez D.: ATR signalling: More than meeting at the fork. Biochem. J., 2011; 436: 527-536Nam E.A. Cortez D. ATR signalling: More than meeting at the fork Biochem. J 2011 436 527 53610.1042/BJ20102162367838821615334Search in Google Scholar

Sulli G., Di Micco R., d’Adda di Fagagna F.: Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat. Rev. Cancer, 2012; 12: 709-720Sulli G. Di Micco R. d’Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer Nat. Rev. Cancer 2012 12 709 72010.1038/nrc334422952011Search in Google Scholar

Zeman M.K., Cimprich K.A.: Causes and consequences of replication stress. Nat. Cell Biol., 2014; 16: 2-9Zeman M.K. Cimprich K.A. Causes and consequences of replication stress Nat. Cell Biol 2014 16 2 910.1038/ncb2897435489024366029Search in Google Scholar

Spriggs C.C., Laimins L.A.: Human papillomavirus and the DNA damage response: Exploiting host repair pathways for viral replication. Viruses, 2017; 9: 232Spriggs C.C. Laimins L.A. Human papillomavirus and the DNA damage response: Exploiting host repair pathways for viral replication Viruses 2017 9 23210.3390/v9080232558048928820495Search in Google Scholar

Sy S.M., Huen M.S., Chen J.: PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA, 2009; 106: 7155-7160Sy S.M. Huen M.S. Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair Proc. Natl. Acad. Sci. USA 2009 106 7155 716010.1073/pnas.0811159106267848119369211Search in Google Scholar

Hollingworth R., Grand R.J.: Modulation of DNA damage and repair pathways by human tumour viruses. Viruses, 2015; 7: 25422591Hollingworth R. Grand R.J. Modulation of DNA damage and repair pathways by human tumour viruses Viruses 2015 7 2542259110.3390/v7052542445292026008701Search in Google Scholar

Ciccia A., Elledge S.J.: The DNA damage response: Making it safe to play with knives. Mol. Cell, 2010; 40: 179-204Ciccia A. Elledge S.J. The DNA damage response: Making it safe to play with knives Mol. Cell 2010 40 179 20410.1016/j.molcel.2010.09.019298887720965415Search in Google Scholar

Nilsson K., Wu C., Schwartz S.: Role of the DNA damage response in human papillomavirus RNA splicing and polyadenylation. Int. J. Mol. Sci., 2018; 19: 1735Nilsson K. Wu C. Schwartz S. Role of the DNA damage response in human papillomavirus RNA splicing and polyadenylation Int. J. Mol. Sci 2018 19 173510.3390/ijms19061735603214729895741Search in Google Scholar

Kee Y., D’Andrea A.D.: Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev., 2010; 24: 1680-1694Kee Y. D’Andrea A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability Genes Dev 2010 24 1680 169410.1101/gad.1955310292249820713514Search in Google Scholar

Moody C.A., Laimins L.A.: Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog., 2009; 5: e1000605Moody C.A. Laimins L.A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation PLoS Pathog 2009 5 e100060510.1371/journal.ppat.1000605274566119798429Search in Google Scholar

Sakakibara N., Mitra R., McBride A.A.: The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol., 2011; 85: 8981-8995Sakakibara N. Mitra R. McBride A.A. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci J. Virol 2011 85 8981 899510.1128/JVI.00541-11316583321734054Search in Google Scholar

Gillespie K.A., Mehta K.P., Laimins L.A., Moody C.A.: Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol., 2012; 86: 9520-9526Gillespie K.A. Mehta K.P. Laimins L.A. Moody C.A. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers J. Virol 2012 86 9520 952610.1128/JVI.00247-12341617222740399Search in Google Scholar

McKinney C.C., Hussmann K.L., McBride A.A.: The role of the DNA damage response throughout the papillomavirus life cycle. Viruses, 2015; 7: 2450-2469McKinney C.C. Hussmann K.L. McBride A.A. The role of the DNA damage response throughout the papillomavirus life cycle Viruses 2015 7 2450 246910.3390/v7052450445291426008695Search in Google Scholar

Anacker D.C., Gautam D., Gillespie K.A., Chappell W.H., Moody C.A.: Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1. J. Virol., 2014; 88: 8528-8544Anacker D.C. Gautam D. Gillespie K.A. Chappell W.H. Moody C.A. Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1 J. Virol 2014 88 8528 854410.1128/JVI.00517-14413593624850735Search in Google Scholar

Chappell W.H., Gautam D., Ok S.T., Johnson B.A., Anacker D.C., Moody C.A.: Homologous recombination repair factors Rad51 and BRCA1 are necessary for productive replication of human papillomavirus 31. J. Virol., 2015; 90: 2639-2652Chappell W.H. Gautam D. Ok S.T. Johnson B.A. Anacker D.C. Moody C.A. Homologous recombination repair factors Rad51 and BRCA1 are necessary for productive replication of human papillomavirus 31 J. Virol 2015 90 2639 265210.1128/JVI.02495-15481072426699641Search in Google Scholar

Hong S., Dutta A., Laimins L.A.: The acetyltransferase Tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J. Virol., 2015; 89: 4668-4675Hong S. Dutta A. Laimins L.A. The acetyltransferase Tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses J. Virol 2015 89 4668 467510.1128/JVI.03455-14444236425673709Search in Google Scholar

Langsfeld E.S., Bodily J.M., Laimins L.A.: The deacetylase sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes. PLoS Pathog, 2015; 11: e1005181Langsfeld E.S. Bodily J.M. Laimins L.A. The deacetylase sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes PLoS Pathog 2015 11 e100518110.1371/journal.ppat.1005181458341726405826Search in Google Scholar

Hoffmann R., Hirt B., Bechtold V., Beard P., Raj K.: Different modes of human papillomavirus DNA replication during maintenance. J. Virol., 2006; 80: 4431-4439Hoffmann R. Hirt B. Bechtold V. Beard P. Raj K. Different modes of human papillomavirus DNA replication during maintenance J. Virol 2006 80 4431 443910.1128/JVI.80.9.4431-4439.2006147199916611903Search in Google Scholar

Mehta K., Gunasekharan V., Satsuka A., Laimins L.A.: Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. PLoS Pathog, 2015; 11: e1004763Mehta K. Gunasekharan V. Satsuka A. Laimins L.A. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators PLoS Pathog 2015 11 e100476310.1371/journal.ppat.1004763439536725875106Search in Google Scholar

Sun M., Nishino T., Marko J.F.: The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res., 2013; 41: 6149-6160Sun M. Nishino T. Marko J.F. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation Nucleic Acids Res 2013 41 6149 616010.1093/nar/gkt303369551823620281Search in Google Scholar

Hong S., Cheng S., Iovane A., Laimins L.A.: STAT-5 regulates transcription of the topoisomerase IIβ-binding protein 1 (TopBP1) gene to activate the ATR pathway and promote human papillomavirus replication. mBio, 2015; 6: e02006-15Hong S. Cheng S. Iovane A. Laimins L.A. STAT-5 regulates transcription of the topoisomerase IIβ-binding protein 1 (TopBP1) gene to activate the ATR pathway and promote human papillomavirus replication mBio 2015 6 e02006 1510.1128/mBio.02006-15470183626695634Search in Google Scholar

Reinson T., Toots M., Kadaja M., Pipitch R., Allik M., Ustav E., Ustav M.: Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J. Virol., 2013; 87: 951-964Reinson T. Toots M. Kadaja M. Pipitch R. Allik M. Ustav E. Ustav M. Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification J. Virol 2013 87 951 96410.1128/JVI.01943-12355408023135710Search in Google Scholar

Bristol M.L., Das D., Morgan I.M.: Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses, 2017; 9: 268Bristol M.L. Das D. Morgan I.M. Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling Viruses 2017 9 26810.3390/v9100268569162028934154Search in Google Scholar

Anacker D.C., Moody C.A.: Modulation of the DNA damage response during the life cycle of human papillomaviruses. Virus Res., 2017; 231: 41-49Anacker D.C. Moody C.A. Modulation of the DNA damage response during the life cycle of human papillomaviruses Virus Res 2017 231 41 4910.1016/j.virusres.2016.11.006532576227836727Search in Google Scholar

Anacker D.C., Aloor H.L., Shepard C.N., Lenzi G.M., Johnson B.A., Kim B., Moody C.A.: HPV31 utilizes the ATR-Chk1 pathway to maintain elevated RRM2 levels and a replication-competent environment in differentiating keratinocytes. Virology, 2016; 499: 383-396Anacker D.C. Aloor H.L. Shepard C.N. Lenzi G.M. Johnson B.A. Kim B. Moody C.A. HPV31 utilizes the ATR-Chk1 pathway to maintain elevated RRM2 levels and a replication-competent environment in differentiating keratinocytes Virology 2016 499 383 39610.1016/j.virol.2016.09.028510279627764728Search in Google Scholar

Edwards T.G., Helmus M.J., Koeller K., Bashkin J.K., Fisher C.: Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways. J. Virol., 2013; 87: 3979-3989Edwards T.G. Helmus M.J. Koeller K. Bashkin J.K. Fisher C. Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways J. Virol 2013 87 3979 398910.1128/JVI.03473-12362421123365423Search in Google Scholar

Moody C.A.: Impact of replication stress in human papillomavirus pathogenesis. J. Virol., 2019; 93: e01012-17Moody C.A. Impact of replication stress in human papillomavirus pathogenesis J. Virol 2019 93 e01012 1710.1128/JVI.01012-17632192030355682Search in Google Scholar

Bester A.C., Roniger M., Oren Y.S., Im M.M., Sarni D., Chaoat M., Bensimon A., Zamir G., Shewach D.S., Kerem B.: Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell, 2011; 145: 435-446Bester A.C. Roniger M. Oren Y.S. Im M.M. Sarni D. Chaoat M. Bensimon A. Zamir G. Shewach D.S. Kerem B. Nucleotide deficiency promotes genomic instability in early stages of cancer development Cell 2011 145 435 44610.1016/j.cell.2011.03.044374032921529715Search in Google Scholar

Kotsantis P., Petermann E., Boulton S.J.: Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov., 2018; 8: 537-555Kotsantis P. Petermann E. Boulton S.J. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place Cancer Discov 2018 8 537 55510.1158/2159-8290.CD-17-1461593523329653955Search in Google Scholar

Bertoli C., Herlihy A.E., Pennycook B.R., Kriston-Vizi J., de Bruin R.A.: Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep., 2016; 15: 1412-1422Bertoli C. Herlihy A.E. Pennycook B.R. Kriston-Vizi J. de Bruin R.A. Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage Cell Rep 2016 15 1412 142210.1016/j.celrep.2016.04.036489315727160911Search in Google Scholar

Herlihy A.E., de Bruin R.A.: The role of the transcriptional response to DNA replication stress. Genes, 2017; 8: 92Herlihy A.E. de Bruin R.A. The role of the transcriptional response to DNA replication stress Genes 2017 8 9210.3390/genes8030092536869628257104Search in Google Scholar

Toledo L.I., Murga M., Zur R., Soria R., Rodriguez A., Martinez S., Oyarzabal J., Pastor J., Bischoff J.R., Fernandez-Capetillo O.: A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol., 2011; 18: 721-727Toledo L.I. Murga M. Zur R. Soria R. Rodriguez A. Martinez S. Oyarzabal J. Pastor J. Bischoff J.R. Fernandez-Capetillo O. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations Nat. Struct. Mol. Biol 2011 18 721 72710.1038/nsmb.2076486983121552262Search in Google Scholar

Jang M.K., Shen K., McBride A.A.: Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLoS Pathog, 2014; 10: e1004117Jang M.K. Shen K. McBride A.A. Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome PLoS Pathog 2014 10 e100411710.1371/journal.ppat.1004117402272524832099Search in Google Scholar

Sarni D., Kerem B.: The complex nature of fragile site plasticity and its importance in cancer. Curr. Opin. Cell Biol., 2016; 40: 131-136Sarni D. Kerem B. The complex nature of fragile site plasticity and its importance in cancer Curr. Opin. Cell Biol 2016 40 131 13610.1016/j.ceb.2016.03.01727062332Search in Google Scholar

Mehta K., Laimins L.: Human papillomaviruses preferentially recruit DNA repair factors to viral genomes for rapid repair and amplification. mBio, 2018; 9: e00064-18Mehta K. Laimins L. Human papillomaviruses preferentially recruit DNA repair factors to viral genomes for rapid repair and amplification mBio 2018 9 e00064 1810.1128/mBio.00064-18582109829440569Search in Google Scholar

Bodelon C., Untereiner M.E., Machiela M.J., Vinokurova S., Wentzensen N.: Genomic characterization of viral integration sites in HPV-related cancers. Int. J. Cancer, 2016; 139: 2001-2011Bodelon C. Untereiner M.E. Machiela M.J. Vinokurova S. Wentzensen N. Genomic characterization of viral integration sites in HPV-related cancers Int. J. Cancer 2016 139 2001 201110.1002/ijc.30243674982327343048Search in Google Scholar

McBride A.A.: Playing with fire: Consequences of human papillomavirus DNA replication adjacent to genetically unstable regions of host chromatin. Curr. Opin. Virol., 2017; 26: 63-68McBride A.A. Playing with fire: Consequences of human papillomavirus DNA replication adjacent to genetically unstable regions of host chromatin Curr. Opin. Virol 2017 26 63 6810.1016/j.coviro.2017.07.01528779692Search in Google Scholar

Wallace N.A., Khanal S., Robinson K.L., Wendel S.O., Messer J.J., Galloway D.A.: High-risk Alphapapillomavirus oncogenes impair the homologous recombination pathway. J. Virol., 2017; 91: e01084-17Wallace N.A. Khanal S. Robinson K.L. Wendel S.O. Messer J.J. Galloway D.A. High-risk Alphapapillomavirus oncogenes impair the homologous recombination pathway J. Virol 2017 91 e01084 1710.1128/JVI.01084-17562548828768872Search in Google Scholar

Gao G., Johnson S.H., Vasmatzis G., Pauley C.E., Tombers N.M., Kasperbauer J.L., Smith D.I.: Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer, 2017; 56: 59-74Gao G. Johnson S.H. Vasmatzis G. Pauley C.E. Tombers N.M. Kasperbauer J.L. Smith D.I. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma Genes Chromosomes Cancer 2017 56 59 7410.1002/gcc.2241527636103Search in Google Scholar

McBride A.A., Warburton A.: The role of integration in oncogenic progression of HPV-associated cancers. PLOS Pathog., 2017; 13: e1006211McBride A.A. Warburton A. The role of integration in oncogenic progression of HPV-associated cancers PLOS Pathog 2017 13 e100621110.1371/journal.ppat.1006211538333628384274Search in Google Scholar

Liu G.B., Chen J., Wu Z.H., Zhao K.N.: Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev. Med. Virol., 2015; 25: 345-353Liu G.B. Chen J. Wu Z.H. Zhao K.N. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients Rev. Med. Virol 2015 25 345 35310.1002/rmv.183425776992Search in Google Scholar

Hoskins E.E., Gunawardena R.W., Habash K.B., Wise-Draper T.M., Jansen M., Knudsen E.S., Wells S.I.: Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene, 2008; 27: 4798-4808Hoskins E.E. Gunawardena R.W. Habash K.B. Wise-Draper T.M. Jansen M. Knudsen E.S. Wells S.I. Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway Oncogene 2008 27 4798 480810.1038/onc.2008.121275682018438432Search in Google Scholar

Spardy N., Duensing A., Hoskins E.E., Wells S.I., Duensing S.: HPV-16 E7 reveals a link between DNA replication stress, Fanconi anemia D2 protein, and alternative lengthening of telomereassociated promyelocytic leukemia bodies. Cancer Res., 2008; 68: 9954-9963Spardy N. Duensing A. Hoskins E.E. Wells S.I. Duensing S. HPV-16 E7 reveals a link between DNA replication stress, Fanconi anemia D2 protein, and alternative lengthening of telomereassociated promyelocytic leukemia bodies Cancer Res 2008 68 9954 996310.1158/0008-5472.CAN-08-0224259739019047177Search in Google Scholar

Hoskins E.E., Morreale R.J., Werner S.P., Higginbotham J.M., Laimins L.A., Lambert P.F., Brown D.R., Gillison M.L., Nuovo G.J., Witte D.P. i wsp.: The Fanconi anemia pathway limits human papillomavirus replication. J. Virol., 2012; 86: 8131-8138Hoskins E.E. Morreale R.J. Werner S.P. Higginbotham J.M. Laimins L.A. Lambert P.F. Brown D.R. Gillison M.L. Nuovo G.J. Witte D.P. i wsp. The Fanconi anemia pathway limits human papillomavirus replication J. Virol 2012 86 8131 813810.1128/JVI.00408-12342169022623785Search in Google Scholar

Park J.W., Pitot H.C., Strati K., Spardy N., Duensing S., Grompe M., Lambert P.F.: Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res., 2010; 70: 9959-9968Park J.W. Pitot H.C. Strati K. Spardy N. Duensing S. Grompe M. Lambert P.F. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer Cancer Res 2010 70 9959 996810.1158/0008-5472.CAN-10-1291299965520935219Search in Google Scholar

Spriggs C.C., Laimins L.A.: FANCD2 binds human papillomavirus genomes and associates with a distinct set of DNA repair proteins to regulate viral replication. mBio, 2017; 8: e02340-16Spriggs C.C. Laimins L.A. FANCD2 binds human papillomavirus genomes and associates with a distinct set of DNA repair proteins to regulate viral replication mBio 2017 8 e02340 1610.1128/mBio.02340-16531208728196964Search in Google Scholar

Tan W., van Twest S., Murphy V.J., Deans A.J.: ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. Cell Dev. Biol., 2020; 8: 2Tan W. van Twest S. Murphy V.J. Deans A.J. ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2 Front. Cell Dev. Biol 2020 8 210.3389/fcell.2020.00002701060932117957Search in Google Scholar

Romick-Rosendale L.E., Hoskins E.E., Privette Vinnedge L.M., Foglesong G.D., Brusadelli M.G., Potter S.S., Komurov K., Brugmann S.A., Lambert P.F., Kimple R.J. i wsp.: Defects in the Fanconi anemia pathway in head and neck cancer cells stimulate tumor cell invasion through DNA-PK and Rac1 signaling. Clin. Cancer Res., 2016; 22: 2062-2073Romick-Rosendale L.E. Hoskins E.E. Privette Vinnedge L.M. Foglesong G.D. Brusadelli M.G. Potter S.S. Komurov K. Brugmann S.A. Lambert P.F. Kimple R.J. i wsp. Defects in the Fanconi anemia pathway in head and neck cancer cells stimulate tumor cell invasion through DNA-PK and Rac1 signaling Clin. Cancer Res 2016 22 2062 207310.1158/1078-0432.CCR-15-2209483427026603260Search in Google Scholar

eISSN:
1732-2693
Language:
English