Cite

Stiegel R., Desantis C., Jemal A.: Colorectal cancer statistics, 2014. CA. Cancer J. Clin., 2014; 64: 104-117. Stiegel R. Desantis C. Jemal A. Colorectal cancer statistics, 2014 CA. Cancer J. Clin 2014 64 104 11710.3322/caac.21220Search in Google Scholar

Hanahan D., Weinberg R.A.: Hallmarks of cancer: The next generation. Cell, 2011; 144: 646–674. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation Cell 2011 144 646 67410.1016/j.cell.2011.02.013Search in Google Scholar

Vaupel P., Thews O., Hoeckel M.: Treatment resistance of solid tumors: role of hypoxia and anemia. Med. Oncol., 2001; 18: 243–259. Vaupel P. Thews O. Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia Med. Oncol 2001 18 24325910.1385/MO:18:4:243Search in Google Scholar

Chen C., Pore N., Behrooz A., Ismail-Beigi F., Maity A.: Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem., 2001; 276: 9519-9525. Chen C. Pore N. Behrooz A. Ismail-Beigi F. Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1 Interaction between H-ras and hypoxia. J. Biol. Chem 2001 276 9519 952510.1074/jbc.M01014420011120745Search in Google Scholar

Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V.: HIF-1-me-diated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006; 3: 177–185. Kim J.W. Tchernyshyov I. Semenza G.L. Dang C.V. HIF-1-me-diated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia Cell Metab 2006 3 177 18510.1016/j.cmet.2006.02.00216517405Search in Google Scholar

Semenza G.L., Jiang B.H., Leung S.W., Passantino R., Concordet J.P., Maire P., Giallongo A.: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem., 1996; 271: 32529–32537. Semenza G.L. Jiang B.H. Leung S.W. Passantino R. Concordet J.P. Maire P. Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 J. Biol. Chem 1996 271 32529 3253710.1074/jbc.271.51.325298955077Search in Google Scholar

Ullah M.S., Davies A.J., Halestrap A.P.: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem., 2006; 281: 9030–9037. Ullah M.S. Davies A.J. Halestrap A.P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism J. Biol. Chem 2006 281 9030 903710.1074/jbc.M51139720016452478Search in Google Scholar

Dang C.V., Le A., Gao P.: MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res., 2009; 15: 6479–6483. Dang C.V. Le A. Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities Clin. Cancer Res 2009 15 6479 648310.1158/1078-0432.CCR-09-0889278341019861459Search in Google Scholar

Osthus R.C., Shim H., Kim S., Li Q., Reddy R., Mukherjee M., Xu Y., Wonsey D., Lee L.A., Dang C.V.: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem., 2000; 275: 21797–21800. Osthus R.C. Shim H. Kim S. Li Q. Reddy R. Mukherjee M. Xu Y. Wonsey D. Lee L.A. Dang C.V. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc J. Biol. Chem 2000 275 21797 2180010.1074/jbc.C00002320010823814Search in Google Scholar

Wise D.R., DeBerardinis R.J., Mancuso A., Sayed N., Zhang X.Y., Pfeiffer H.K., Nissim I., Daikhin E., Yudkoff M., et al.: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA, 2008; 1059: 18782–18787. Wise D.R. DeBerardinis R.J. Mancuso A. Sayed N. Zhang X.Y. Pfeiffer H.K. Nissim I. Daikhin E. Yudkoff M. et al Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction Proc. Natl. Acad. Sci. USA 2008 1059 18782 1878710.1073/pnas.0810199105259621219033189Search in Google Scholar

Fantin V.R., St‐Pierre J., Leder P.: Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006; 9: 425–434. Fantin V.R. St‐Pierre J. Leder P. Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance Cancer Cell 2006 9 425 43410.1016/j.ccr.2006.04.02316766262Search in Google Scholar

Gatenby R.A., Gillies R.J.: Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004; 4: 891–899. Gatenby R.A. Gillies R.J. Why do cancers have high aerobic glycolysis? Nat Rev. Cancer 2004 4 891 89910.1038/nrc147815516961Search in Google Scholar

Burgman P., O’Donoghue J.A., Humm J.L., Ling C.C.: Hypoxia-induced increase in FDG uptake in MCF–7 cells. J. Nucl. Med., 2001; 42: 170–175. Burgman P. O’Donoghue J.A. Humm J.L. Ling C.C. Hypoxia-induced increase in FDG uptake in MCF–7 cells J. Nucl. Med 2001 42 170 175Search in Google Scholar

Busk M., Horsman M.R., Kristjansen P.E., van der Kogel A.J., Bussink J., Overgaard J.: Aerobic glycolysis in cancers: Implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int. J. Cancer, 2008; 122: 2726–2734. Busk M. Horsman M.R. Kristjansen P.E. van der Kogel A.J. Bussink J. Overgaard J. Aerobic glycolysis in cancers: Implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia Int. J. Cancer 2008 122 2726 273410.1002/ijc.2344918351643Search in Google Scholar

Clavo A.C., Brown R.S., Wahl R.L.: Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J. Nucl. Med., 1995; 36: 1625–1632. Clavo A.C. Brown R.S. Wahl R.L. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia J. Nucl. Med 1995 36 1625 1632Search in Google Scholar

Gambhir S.S.: Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer, 2002; 2: 683–693. Gambhir S.S. Molecular imaging of cancer with positron emission tomography Nat. Rev. Cancer 2002 2 683 69310.1038/nrc88212209157Search in Google Scholar

Mekuria A.N., Abdi A.D.: Drivers of glucose and glutamine metabolism reprogramming in tumor cells and their potential as target for cancer. J. Tumor Res., 2018; 4: 139. Mekuria A.N. Abdi A.D. Drivers of glucose and glutamine metabolism reprogramming in tumor cells and their potential as target for cancer J. Tumor Res 2018 4 13910.35248/2684-1258.18.4.139Search in Google Scholar

Phan L.M., Yeung S.C., Lee M.H.: Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med., 2014; 11: 1–19. Phan L.M. Yeung S.C. Lee M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies Cancer Biol. Med 2014 11 1 19Search in Google Scholar

Anastasiou D., Cantley L.C.: Breathless cancer cells get fat on glutamine. Cell Res., 2012; 22: 443–446. Anastasiou D. Cantley L.C. Breathless cancer cells get fat on glutamine Cell Res 2012 22 443 44610.1038/cr.2012.5329229022212478Search in Google Scholar

Metallo C.M., Gameiro P.A., Bell E.L., Mattaini K.R., Yang J., Hiller K., Jewell C.M., Johnson Z.R., Irvine D.J., Guarente L., et al.: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 2011; 481: 380–384. Metallo C.M. Gameiro P.A. Bell E.L. Mattaini K.R. Yang J. Hiller K. Jewell C.M. Johnson Z.R. Irvine D.J. Guarente L. et al Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia Nature 2011 481 380 38410.1038/nature10602371058122101433Search in Google Scholar

Mullen A.R., Wheaton W.W., Jin E.S., Chen P.H., Sullivan L.B., Cheng T., Yang Y., Linehan W.M., Chandel N.S., DeBerardinis R.J.: Reductive carboxylation supports growth in tumor cells with defective mitochondria. Nature, 2011; 481: 385–388. Mullen A.R. Wheaton W.W. Jin E.S. Chen P.H. Sullivan L.B. Cheng T. Yang Y. Linehan W.M. Chandel N.S. DeBerardinis R.J. Reductive carboxylation supports growth in tumor cells with defective mitochondria Nature 2011 481 385 38810.1038/nature10642326211722101431Search in Google Scholar

Graboń W., Otto-Ślusarczyk D., Baranczyk-Kuźma A.: Influence of oxygen on the Warburg effect: Do cancer cells produce lactate only from glucose? Postępy Hig. Med. Dośw., 2018; 72: 481–490. Graboń W. Otto-Ślusarczyk D. Baranczyk-Kuźma A. Influence of oxygen on the Warburg effect: Do cancer cells produce lactate only from glucose? Postępy Hig Med. Dośw 2018 72 481 49010.5604/01.3001.0012.0684Search in Google Scholar

Son J., Lyssiotis C.A., Ying H., Wang X., Ligorio M., Ligorio M., Perera R.M., Ferrone C.R., Mullarky E., Shyh-Chang N., et al.: Glutamine supports pancreatic cancer growth through a KRAS-regulated matabolic pathway. Nature, 2013; 496: 101–105. Son J. Lyssiotis C.A. Ying H. Wang X. Ligorio M. Ligorio M. Perera R.M. Ferrone C.R. Mullarky E. Shyh-Chang N. et al Glutamine supports pancreatic cancer growth through a KRAS-regulated matabolic pathway Nature 2013 496 101 10510.1038/nature12040365646623535601Search in Google Scholar

Nicco C., Laurent A., Chreau C., Weill B., Batteux F.: Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed. Pharmacother., 2005; 59: 169–174. Nicco C. Laurent A. Chreau C. Weill B. Batteux F. Differential modulation of normal and tumor cell proliferation by reactive oxygen species Biomed. Pharmacother 2005 59 169 17410.1016/j.biopha.2005.03.00915862711Search in Google Scholar

Overgaad J.: Hypoxic radiosensitization: Adored and ignored. J. Clin. Oncol., 2007; 25: 4066–4074. Overgaad J. Hypoxic radiosensitization: Adored and ignored J. Clin. Oncol 2007 25 4066 407410.1200/JCO.2007.12.787817827455Search in Google Scholar

Gasińska A., Biesaga B.: Dwa oblicza hipoksji nowotworów. Nowotwory J. Oncol., 2010; 60: 332. Gasińska A. Biesaga B. Dwa oblicza hipoksji nowotworów Nowotwory J. Oncol 2010 60 332Search in Google Scholar

Kunz M., Ibrahim S.M.: Molecular responses to hypoxia in tumor cells. Mol. Cancer, 2003; 2: 23. Kunz M. Ibrahim S.M. Molecular responses to hypoxia in tumor cells Mol. Cancer 2003 2 2310.1186/1476-4598-2-2315563812740039Search in Google Scholar

Macheda M.W., Rogers S., Best J.D.: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol., 2005; 202: 654–662. Macheda M.W. Rogers S. Best J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer J. Cell Physiol 2005 202 654 66210.1002/jcp.2016615389572Search in Google Scholar

Medina R.A., Owen G.I.: Glucose transporters: Expression, regulation and cancer. Biol. Res., 2002; 35: 9–26. Medina R.A. Owen G.I. Glucose transporters: Expression, regulation and cancer Biol. Res 2002 35 9 2610.4067/S0716-9760200200010000412125211Search in Google Scholar

Chung F.Y., Hyang M.Y., Yeh C.S, Chang H.J., Cheng T.L., Yen L.C., Wang J.Y., Lin S.R.: GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer., 2009; 9: 241. Chung F.Y. Hyang M.Y. Yeh C.S Chang H.J. Cheng T.L. Yen L.C. Wang J.Y. Lin S.R. GLUT1 gene is a potential hypoxic marker in colorectal cancer patients BMC Cancer 2009 9 24110.1186/1471-2407-9-241Search in Google Scholar

Evans S.M., Koch C.J.: Prognostic significance of tumor oxygenation in humans. Cancer Lett. 2003; 195: 1–16. Evans S.M. Koch C.J. Prognostic significance of tumor oxygenation in humans Cancer Lett 2003 195 1 1610.1016/S0304-3835(03)00012-0Search in Google Scholar

Li F., Wang Y., Zeller K.I., Potter J.J., Wonsey D.R., O’Donnell K.A., Kim J.W., Yustein J.T., Lee L.A., Dang C.V.: Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol., 2005; 25: 6225–6234. Li F. Wang Y. Zeller K.I. Potter J.J. Wonsey D.R. O’Donnell K.A. Kim J.W. Yustein J.T. Lee L.A. Dang C.V. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis Mol. Cell. Biol 2005 25 6225 623410.1128/MCB.25.14.6225-6234.2005116879815988031Search in Google Scholar

Morrish F., Hockenberry D.: MYC and mitochondrial biogenesis. Cold Spring Harb Perspect. Med., 2014; 4: a014225. Morrish F. Hockenberry D. MYC and mitochondrial biogenesis Cold Spring Harb Perspect. Med 2014 4 a01422510.1101/cshperspect.a014225399637424789872Search in Google Scholar

DeBerardinis R.J., Mancuso A., Daikhin E., Nissim I., Yudkoff M., Wehrli S., Thompson C.B.: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 2007;104: 19345–19350. DeBerardinis R.J. Mancuso A. Daikhin E. Nissim I. Yudkoff M. Wehrli S. Thompson C.B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis Proc. Natl. Acad. Sci. USA 2007104 19345 1935010.1073/pnas.0709747104214829218032601Search in Google Scholar

Matsuno T., Goto I.: Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res., 1992; 52: 1192–1194. Matsuno T. Goto I. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma Cancer Res 1992 52 1192 1194Search in Google Scholar

Pérez-Gómez C., Campos-Sandoval J.A., Alonso F.J., Segura J.A., Manzanares E., Ruiz-Sánchez P., González M.E., Márquez J., Matés J.M.: Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem. J., 2005; 386: 535–542. Pérez-Gómez C. Campos-Sandoval J.A. Alonso F.J. Segura J.A. Manzanares E. Ruiz-Sánchez P. González M.E. Márquez J. Matés J.M. Co-expression of glutaminase K and L isoenzymes in human tumour cells Biochem. J 2005 386 535 54210.1042/BJ20040996113487215496140Search in Google Scholar

Qie S., Chu C., Li W., Wang C., Sang N.: ErbB2 activation upregulated glutaminase 1 expression which promotes breast cancer cell proliferation. J. Cell. Biochem., 2014; 115: 498–509. Qie S. Chu C. Li W. Wang C. Sang N. ErbB2 activation upregulated glutaminase 1 expression which promotes breast cancer cell proliferation J. Cell. Biochem 2014 115 498 50910.1002/jcb.24684451887324122876Search in Google Scholar

Su L., Li J., Yang J., Shi J., Yu D., Ding Y.: Expression of glutaminase 1 gene in breast cancer and its clinical significance in neoadjuvant chemotherapy. Int. J. Clin. Exp. Pathol., 2016; 9: 9311–9317. Su L. Li J. Yang J. Shi J. Yu D. Ding Y. Expression of glutaminase 1 gene in breast cancer and its clinical significance in neoadjuvant chemotherapy Int. J. Clin. Exp. Pathol 2016 9 9311 9317Search in Google Scholar

Otto-Ślusarczyk D., Graboń W., Barańczyk-Kuźma A.: Pattern of glutaminase expression in primary colorectal cancer. J. Med. Brasovea, 2010; 2010: 40–43. Otto-Ślusarczyk D. Graboń W. Barańczyk-Kuźma A. Pattern of glutaminase expression in primary colorectal cancer J. Med. Brasovea 2010 2010 40 43Search in Google Scholar

Huang F., Zhang Q., Ma H., Lv Q., Zhang T.: Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int. J. Clin. Exp. Pathol., 2014; 7: 1093–1100. Huang F. Zhang Q. Ma H. Lv Q. Zhang T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance Int. J. Clin. Exp. Pathol 2014 7 1093 1100Search in Google Scholar

Xiang L., Mou J., Shao B., Wei Y., Liang H., Takano N., Semenza G.L., Xie G.: Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis., 2019; 10: 40. Xiang L. Mou J. Shao B. Wei Y. Liang H. Takano N. Semenza G.L. Xie G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization Cell Death Dis 2019 10 4010.1038/s41419-018-1291-5642685330674873Search in Google Scholar

Gao P., Tchernyshyov I., Chang T.C., Lee Y.S., Kita K., Ochi T., Zeller K.I., De Marzo A.M., Van Eyk J.E., Mendell J.T., Dang C.V.: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009; 458: 762–765. Gao P. Tchernyshyov I. Chang T.C. Lee Y.S. Kita K. Ochi T. Zeller K.I. De Marzo A.M. Van Eyk J.E. Mendell J.T. Dang C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism Nature 2009 458 762 76510.1038/nature07823272944319219026Search in Google Scholar

Corn P.G., Ricci M.S., Scata K.A., Arsham A.M., Simon M.C., Dicker D.T., EL-Deiry W.S.: Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc induced apoptosis. Cancer Biol. Ther., 2005; 4: 1285–1294. Corn P.G. Ricci M.S. Scata K.A. Arsham A.M. Simon M.C. Dicker D.T. EL-Deiry W.S. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc induced apoptosis Cancer Biol. Ther 2005 4 1285 129410.4161/cbt.4.11.229916319523Search in Google Scholar

Dang C.V., Kim J.W., Gao P., Yustein J.: The interplay between MYC and HIF in cancer. Nat. Rev. Cancer, 2008; 8: 51–56. Dang C.V. Kim J.W. Gao P. Yustein J. The interplay between MYC and HIF in cancer Nat. Rev. Cancer 2008 8 51 5610.1038/nrc227418046334Search in Google Scholar

Zhang H., Gao P., Fukuda R., Kumar G., Krishnamachary B., Zeller K.I., Dang C.V., Semenza G.L.: HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 2007; 11: 407–420. Zhang H. Gao P. Fukuda R. Kumar G. Krishnamachary B. Zeller K.I. Dang C.V. Semenza G.L. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity Cancer Cell 2007 11 407 42010.1016/j.ccr.2007.04.00117482131Search in Google Scholar

Altman B.J., Stine Z.E., Dang C.V.: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016; 16: 619–634. Altman B.J. Stine Z.E. Dang C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy Nat. Rev. Cancer 2016 16 619 63410.1038/nrc.2016.71548441527492215Search in Google Scholar

Kovacević Z., Brkljac O., Bajin K.: Control and function of the transamination pathways of glutamine oxidation in tumour cells. Biochem J., 1991; 273: 271–275. Kovacević Z. Brkljac O. Bajin K. Control and function of the transamination pathways of glutamine oxidation in tumour cells Biochem J 1991 273 271 27510.1042/bj273027111498411991025Search in Google Scholar

Graboń W., Otto-Ślusarczyk D., Chrzanowska A., Mielczarek-Puta M., Joniec-Maciejak I., Słabik K., Barańczyk-Kuźma A.: Lactate formation in primary and metastatic colon cancer cell at hypoxia and normoxia. Cell Biochem. Funct., 2016; 34: 483–490. Graboń W. Otto-Ślusarczyk D. Chrzanowska A. Mielczarek-Puta M. Joniec-Maciejak I. Słabik K. Barańczyk-Kuźma A. Lactate formation in primary and metastatic colon cancer cell at hypoxia and normoxia Cell Biochem. Funct 2016 34 483 49010.1002/cbf.321127528248Search in Google Scholar

Possemato R., Marks K.M., Shaul Y.D., Pacold M.E., Kim D., Birsoy K., Sethumadhavan S., Woo H.K., Jang H.G., Jha A.K., et al.: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 2011; 476: 346–350. Possemato R. Marks K.M. Shaul Y.D. Pacold M.E. Kim D. Birsoy K. Sethumadhavan S. Woo H.K. Jang H.G. Jha A.K. et al Functional genomics reveal that the serine synthesis pathway is essential in breast cancer Nature 2011 476 346 35010.1038/nature10350335332521760589Search in Google Scholar

Li C., Zhang G., Zhao L., Ma Z., Chen H.: Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol., 2016; 14: 15. Li C. Zhang G. Zhao L. Ma Z. Chen H. Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer World J. Surg. Oncol 2016 14 1510.1186/s12957-016-0769-9472111626791262Search in Google Scholar

Sun R.C., Denko N.C.: Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab., 2014; 19: 285–292. Sun R.C. Denko N.C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth Cell Metab 2014 19 285 29210.1016/j.cmet.2013.11.022392058424506869Search in Google Scholar

Vatrinet R., Leone G., De Luise M., Girolimetti G., Vidone M., Gasparre G., Porcelli A.M.: The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab., 2017; 5: 3. Vatrinet R. Leone G. De Luise M. Girolimetti G. Vidone M. Gasparre G. Porcelli A.M. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity Cancer Metab 2017 5 310.1186/s40170-017-0165-0528901828184304Search in Google Scholar

Jiang L., Shestov A.A., Swain P., Yang C., Parker S.J., Wang Q.A., Terada L.S., Adams N.D., McCabe M.T., Pietrak B., et al.: Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016; 532: 255–258. Jiang L. Shestov A.A. Swain P. Yang C. Parker S.J. Wang Q.A. Terada L.S. Adams N.D. McCabe M.T. Pietrak B. et al Reductive carboxylation supports redox homeostasis during anchorage-independent growth Nature 2016 532 255 25810.1038/nature17393486095227049945Search in Google Scholar

Waters A., Zhdanov A., Papkovsky D.: Regulation of pyruvate dehydrogenase phosphorylation by hypoxia. FASEB J., 2014; 28: 572.4. Waters A. Zhdanov A. Papkovsky D. Regulation of pyruvate dehydrogenase phosphorylation by hypoxia FASEB J 2014 28 572 410.1096/fasebj.28.1_supplement.572.4Search in Google Scholar

Lin C.S., Liu L.T., Ou L.H., Pan S.C., Lin C.I., Wei Y.H.: Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol. Rep., 2018; 39: 316–330. Lin C.S. Liu L.T. Ou L.H. Pan S.C. Lin C.I. Wei Y.H. Role of mitochondrial function in the invasiveness of human colon cancer cells Oncol. Rep 2018 39 316 33010.3892/or.2017.608729138850Search in Google Scholar

Fiermonte G., Palmieri L., Todisco S., Agrimi G., Palmieri F., Walker J.E.: Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J. Biol. Chem., 2002; 277: 19289–19294. Fiermonte G. Palmieri L. Todisco S. Agrimi G. Palmieri F. Walker J.E. Identification of the mitochondrial glutamate transporter Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J. Biol. Chem 2002 277 19289 1929410.1074/jbc.M20157220011897791Search in Google Scholar

Molinari F., Raas-Rothschild A., Rio M., Fiermonte G., Encha-Razavi F., Palmieri L., Palmieri F., Ben-Neriah Z., Kadhom N., Vekemans M., et al.: Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am. J. Hum. Genet., 2005; 76: 334–339. Molinari F. Raas-Rothschild A. Rio M. Fiermonte G. Encha-Razavi F. Palmieri L. Palmieri F. Ben-Neriah Z. Kadhom N. Vekemans M. et al Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy Am. J. Hum. Genet 2005 76 334 33910.1086/427564119637815592994Search in Google Scholar

Palmieri F.: The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol. Aspects Med., 2013; 34: 465–484. Palmieri F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology Mol. Aspects Med 2013 34 465 48410.1016/j.mam.2012.05.00523266187Search in Google Scholar

Slater C., De La Mare J.A., Edkins A.L.: In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncol. Lett., 2018; 15: 8516–8526. Slater C. De La Mare J.A. Edkins A.L. In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model Oncol. Lett 2018 15 8516 852610.3892/ol.2018.8431595052429805588Search in Google Scholar

eISSN:
1732-2693
Language:
English