[
Abbas, F., Al-Otoom, A., Al-Naemi, S., Ashraf, A., & Mahasneh, H. (2024). Experimental and life cycle assessments of tomato (Solanum lycopersicum) cultivation under controlled environment agriculture. Journal of Agriculture and Food Research, 18, 101266. https://doi.org/10.1016/j.jafr.2024.101266.
]Search in Google Scholar
[
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
]Search in Google Scholar
[
Anand, A., Kumar, V., & Kaushal, P. (2022). Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, 156, 111959. https://doi.org/10.1016/j.rser.2021.111959.
]Search in Google Scholar
[
Audsley, E., K. Stacey, K., Parsons, D.J., and Williams A.G. (2009). Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. http://dspace.lib.cranfield.ac.uk/handle/1826/3913 (accessed at 24 September 2024).
]Search in Google Scholar
[
Bains, A., Sridhar, K., Dhull, S. B., Chawla, P., Sharma, M., Sarangi, P. K., & Gupta, V. K. (2024). Circular Bioeconomy in Carbon Footprint Components of Nonthermal Processing Technologies Towards Sustainable Food System: A Review. Trends in Food Science & Technology, 149,104520 https://doi.org/10.1016/j.tifs.2024.104520.
]Search in Google Scholar
[
Braglia, M., Di Paco, F., Gabbrielli, R., Grassi, C., & Marrazzini, L. (2024). Greenhouse gas Emissions Deployment (GED): A novel Lean method for mitigating greenhouse gas emissions in industrial environment. Sustainable Production and Consumption, 48, 29-45. https://doi.org/10.1016/j.spc.2024.05.008.
]Search in Google Scholar
[
Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research, 11, 100533. https://doi.org/10.1016/j.jafr.2023.100533.
]Search in Google Scholar
[
Chen, J., Wang, S., Zhong, H., Chen, B., & Fang, D. (2024). Assessing agricultural greenhouse gas emission mitigation by scaling up farm size: An empirical analysis based on rural household survey data. Science of The Total Environment, 933, 173077. https://doi.org/10.1016/j.scitotenv.2024.173077.
]Search in Google Scholar
[
Chen, R., Shen, W., Chen, Z., Guo, J., Yang, L., Fei, G., ... & Wang, L. (2024). Modulation of soil nitrous oxide emissions and nitrogen leaching by hillslope hydrological processes. Science of The Total Environment, 951, 175637. https://doi.org/10.1016/j.scitotenv.2024.175637.
]Search in Google Scholar
[
Cordeiro, E. U., Arenas-Calle, L., Woolf, D., Sherpa, S., Poonia, S., Kritee, K., ... & McDonald, A. (2024). The fate of rice crop residues and context-dependent greenhouse gas emissions: Modelbased insights from Eastern India. Journal of Cleaner Production, 435, 140240. https://doi.org/10.1016/j.jclepro.2023.140240.
]Search in Google Scholar
[
Costantini, M., & Bacenetti, J. (2021). Soybean and maize cultivation in South America: Environmental comparison of different cropping systems. Cleaner Environmental Systems, 2, 100017. https://doi.org/10.1016/j.cesys.2021.100017.
]Search in Google Scholar
[
Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F.N. & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2, 198–209. https://doi.org/10.1038/s43016-021-00225-9.
]Search in Google Scholar
[
Cui, H., Luo, Y., Chen, J., Jin, M., Li, Y., & Wang, Z. (2022). Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. European Journal of Agronomy, 133, 126436. https://doi.org/10.1016/j.eja.2021.126436.
]Search in Google Scholar
[
Deng, Z., Ren, X., Han, J., Cui, K., Han, K., Yue, Q., ... & Peng, S. (2024). Identifying a sustainable rice-based cropping system via on-farm evaluation of grain yield, carbon sequestration capacity and carbon footprints in Central China. Field Crops Research, 316, 109510. https://doi.org/10.1016/j.fcr.2024.109510.
]Search in Google Scholar
[
Deshpande, M. V., Kumar, N., Pillai, D., Krishna, V. V., & Jain, M. (2023). Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. Science of the Total Environment, 904, 166944. https://doi.org/10.1016/j.scitotenv.2023.166944.
]Search in Google Scholar
[
Devapriya, P., Ferrell, W., & Geismar, N. (2017). Integrated production and distribution scheduling with a perishable product. European Journal of Operational Research, 259(3), 906-916. https://doi.org/10.1016/j.ejor.2016.09.019.
]Search in Google Scholar
[
Du, Y., Lu, Y., Guo, S., Wang, R., Song, X., & Ju, X. (2024). Enhanced efficiency nitrogen fertilizers (EENFs) can reduce nitrous oxide emissions and maintain high grain yields in a rain-fed spring maize cropping system. Field Crops Research, 312, 109408. https://doi.org/10.1016/j.fcr.2024.109408.
]Search in Google Scholar
[
Dziuba, K., Todorow, M., Góra, R., Gabryszewska, M., Kijeńska, M., Gworek, B., ... & Tokarz, L. (2018). Use of carbon footprint to assess CO2 and N2O emissions during the production of nitrogen fertilizers. Desalination and Water Treatment, 117, 267-271. https://doi.org/10.5004/dwt.2018.22498.
]Search in Google Scholar
[
EPA United States Environmental Protection Agency (2016) Greenhouse Gas Inventory Guidance Direct Emissions from Mobile Combustion Sources, 27.
]Search in Google Scholar
[
(EU) 2018/842. Rozporządzenie Parlamentu Europejskiego i Rady zmieniające rozporządzenie (EU) 2018/842 w sprawie wiążących rocznych redukcji emisji gazów cieplarnianych przez państwa członkowskie od 2021 r. do 2030 r. przyczyniających się do działań na rzecz klimatu w celu wywiązania się z zobowiązań wynikających z porozumienia paryskiego oraz zmieniające rozporządzenie (UE) 2018/1999.
]Search in Google Scholar
[
European Environemnt Agency. Greenhouse gas emissions from agriculture in Europe Published 24 Oct 2023.
]Search in Google Scholar
[
FAO. 2017. Global database of GHG emissions related to feed crops: Methodology. Version 1. Livestock Environmental Assessment and Performance Partnership. FAO, Rome, Italy.
]Search in Google Scholar
[
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., ... & Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007, The Physical Science Basis; Cambridge University Press: Cambridge, UK, pp. 129-234.
]Search in Google Scholar
[
Gan, Y., Liang, C., Wang, X., & McConkey, B. (2011). Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Research, 122(3), 199-206. https://doi.org/10.1016/j.fcr.2011.03.020.
]Search in Google Scholar
[
Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R., Williamson, P., Huisingh, D., ... & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 244, 118896. https://doi.org/10.1016/j.jclepro.2019.118896.
]Search in Google Scholar
[
Habib, M., Singh, S., Bist, Y., Kumar, Y., Jan, K., Bashir, K., ... & Saxena, D. C. (2024). Carbon Pricing and the Food System: Implications for Sustainability and Equity. Trends in Food Science & Technology, 150, 104577. https://doi.org/10.1016/j.tifs.2024.104577.
]Search in Google Scholar
[
He, H., Li, D., Wu, Z., Wu, Z., Hu, Z., & Yang, S. (2024). Assessment of the straw and biochar application on greenhouse gas emissions and yield in paddy fields under intermittent and controlled irrigation patterns. Agriculture, Ecosystems & Environment, 359, 108745. https://doi.org/10.1016/j.agee.2023.108745.
]Search in Google Scholar
[
Hoffmann, S., Lasarov, W., Reimers, H., & Trabandt, M. (2024). Carbon footprint tracking apps. Does feedback help reduce carbon emissions?. Journal of Cleaner Production, 434, 139981. https://doi.org/10.1016/j.jclepro.2023.139981.
]Search in Google Scholar
[
Hu, X., Dong, C., & Zhang, Y. (2024). Dynamic evolution of the ecological footprint of arable land in the Yellow and Huaihai Main grain producing area based on structural equation modeling and analysis of driving factors. Ecological Informatics, 82, 102720. https://doi.org/10.1016/j.ecoinf.2024.102720.
]Search in Google Scholar
[
Incrocci, L., Thompson, R. B., Fernandez-Fernandez, M. D., De Pascale, S., Pardossi, A., Stanghellini, C., ... & Gallardo, M. (2020). Irrigation management of European greenhouse vegetable crops. Agricultural Water Management, 242, 106393. https://doi.org/10.1016/j.agwat.2020.106393.
]Search in Google Scholar
[
IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4:Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change.
]Search in Google Scholar
[
ISO 14040. Environmental Management-Life Cycle Assessment-Principles and Framework; ISO Geneva, Switzerland, 2006.
]Search in Google Scholar
[
ISO 14040. Environmental management-life cycle assessment-principles and framework. Geneva Switzerland ISO 14044 Environmental management -Life cycle assessment - Requirements and guidelines.
]Search in Google Scholar
[
ISO 14044. Environmental Management - Life Cycle Assessment e Requirements and Guidelines. ISO, Geneva 2006.
]Search in Google Scholar
[
ISO 14064-1:2018. Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals.
]Search in Google Scholar
[
ISO 31000: 2018. Risk management, Geneva, Switzerland, 2018.
]Search in Google Scholar
[
Jensen, L., & Scalamandrè, C. (2023). European Parliamentary Research Service. PE 739.327.
]Search in Google Scholar
[
Kapoor, S., & Pal, B. D. (2024). Impact of adoption of climate smart agriculture practices on farmer’s income in semi-arid regions of Karnataka. Agricultural Systems, 221, 104135. https://doi.org/10.1016/j.agsy.2024.104135.
]Search in Google Scholar
[
Kapusta-Duch, J., Szeląg-Sikora, A., Sikora, J., Niemiec, M., Gródek-Szostak, Z., Kuboń, M., ... & Borczak, B. (2019). Health-promoting properties of fresh and processed purple cauliflower. Sustainability, 11(15), 4008. https://doi.org/10.3390/su11154008.
]Search in Google Scholar
[
Karaşan, A., Gündoğdu, F. K., Işık, G., Kaya, İ., & İlbahar, E. (2024). Assessment of governmental strategies for sustainable environment regarding greenhouse gas emission reduction under uncertainty. Journal of Environmental Management, 349, 119577. https://doi.org/10.1016/j.jenvman.2023.119577.
]Search in Google Scholar
[
Komorowska, M., Niemiec, M., Sikora, J., Gródek-Szostak, Z., Gurgulu, H., Chowaniak, M., ... & Neuberger, P. (2023). Evaluation of sheep wool as a substrate for hydroponic cucumber cultivation. Agriculture, 13(3), 554. https://doi.org/10.3390/agriculture13030554.
]Search in Google Scholar
[
Komorowska, M., Niemiec, M., Sikora, J., Suder, M., Gródek-Szostak, Z., Atilgan, A., ... & Duda, J. (2024). Strategies for managing corn crop residue in the context of greenhouse gas emissions. Environmental Science and Pollution Research, 1-17. https://doi.org/10.21203/rs.3.rs-4018711/v1.
]Search in Google Scholar
[
Kool, A., Marinussen, M., & Blonk, H. (2012). LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization. GHG Emissions of N, P and K fertiliser production, 20.
]Search in Google Scholar
[
Kuboń, M., Niemiec, M., Klimek-Kopyra, A., Gliniak, M., Sikora, J., Sadowska, U., ... & Wichliński, M. (2021). Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy, 11(11), 2224. https://doi.org/10.3390/agronomy11112224.
]Search in Google Scholar
[
Kumar, R., Karmakar, S., Minz, A., Singh, J., Kumar, A., & Kumar, A. (2021). Assessment of greenhouse gases emission in maize-wheat cropping system under varied N fertilizer application using cool farm tool. Frontiers in Environmental Science, 9, 710108. https://doi.org/10.3389/fenvs.2021.710108.
]Search in Google Scholar
[
Lanz, B., Dietz, S., & Swanson, T. (2018a). The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecological Economics, 144, 260-277. https://doi.org/10.1016/j.ecolecon.2017.07.018.
]Search in Google Scholar
[
Lanz, B., Dietz, S., & Swanson, T. (2018b). Global economic growth and agricultural land conversion under uncertain productivity improvements in agriculture. American Journal of Agricultural Economics, 100(2), 545-569. https://doi.org/10.1093/ajae/aax078.
]Search in Google Scholar
[
Latawiec, A. E., Koryś, A., Koryś, K. A., Kuboń, M., Sadowska, U., Gliniak, M., ... & Medeiros, B. (2021). Economic analysis of biochar use in soybean production in Poland. Agronomy, 11(11), 2108. https://doi.org/10.3390/agronomy11112108.
]Search in Google Scholar
[
Li, J., Sun, W., Lichtfouse, E., Maurer, C., & Liu, H. (2024). Life cycle assessment of biochar for sustainable agricultural application: A review. Science of The Total Environment, 175448. https://doi.org/10.1016/j.scitotenv.2024.175448.
]Search in Google Scholar
[
Liang, Z., Cao, B., Jiao, Y., Liu, C., Li, X., Meng, X., ... & Tian, X. (2022). Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter. Applied Soil Ecology, 171, 104324. https://doi.org/10.1016/j.apsoil.2021.104324.
]Search in Google Scholar
[
Liu, L., Hu, X., Li, L., Sun, Z., & Zhang, Q. (2024). Understanding China’s agricultural non-carbondioxide greenhouse gas emissions: Subnational insights and global trade dynamics. Environmental Impact Assessment Review, 106, 107487. https://doi.org/10.1016/j.eiar.2024.107487.
]Search in Google Scholar
[
Liu, Q. Y., Xu, C. T., Han, S. W., Li, X. X., Kan, Z. R., Zhao, X., & Zhang, H. L. (2021). Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheatmaize cropping system. Science of the Total Environment, 798, 149220. https://doi.org/10.1016/j.scitotenv.2021.149220.
]Search in Google Scholar
[
Mdhluli, F. T., & Harding, K. G. (2021). Comparative life-cycle assessment of maize cobs, maize stover and wheat stalks for the production of electricity through gasification vs traditional coal power electricity in South Africa. Cleaner Environmental Systems, 3, 100046. https://doi.org/10.1016/j.cesys.2021.100046
]Search in Google Scholar
[
Moult, J. A., Allan, S. R., Hewitt, C. N., & Berners-Lee, M. (2018). Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy, 77, 50-58. https://doi.org/10.1016/j.foodpol.2018.04.003.
]Search in Google Scholar
[
Niemiec, M., Komorowska, M., Szeląg-Sikora, A., Sikora, J., Kuboń, M., Gródek-Szostak, Z., & Kapusta-Duch, J. (2019). Risk assessment for social practices in small vegetable farms in Poland as a tool for the optimization of quality management systems. Sustainability, 11(14), 3913. https://doi.org/10.3390/su11143913.
]Search in Google Scholar
[
Nordahl, S. L., Hanes, R. J., Mayfield, K. K., Myers, C., Baker, S. E., & Scown, C. D. (2024). Carbon accounting for carbon dioxide removal. One Earth, 7(9), 1494-1500. https://doi.org/10.1016/j.oneear.2024.08.012.
]Search in Google Scholar
[
Novoa, R. S., & Tejeda, H. R. (2006). Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrient Cycling in Agroecosystems, 75(1), 29-46.
]Search in Google Scholar
[
Nsabiyeze, A., Ma, R., Li, J., Zhao, Q., & Zhang, M. (2024). Mitigating greenhouse gas emissions from sheep production system in China: An integrated approach of data envelopment analysis and life cycle assessment. Resources, Conservation and Recycling, 207, 107695. https://doi.org/10.1016/j.resconrec.2024.107695.
]Search in Google Scholar
[
Pareja-Sánchez, E., Cantero-Martínez, C., Álvaro-Fuentes, J., & Plaza-Bonilla, D. (2019). Tillage and nitrogen fertilization in irrigated maize: key practices to reduce soil CO2 and CH4 emissions. Soil and Tillage Research, 191, 29-36. https://doi.org/10.1016/j.still.2019.03.007.
]Search in Google Scholar
[
Pramanick, B., Kumar, M., Naik, B. M., Singh, S. K., Kumar, M., & Singh, S. V. (2024). Soil carbonnutrient cycling, energetics, and carbon footprint in calcareous soils with adoption of long-term conservation tillage practices and cropping systems diversification. Science of The Total Environment, 912, 169421. https://doi.org/10.1016/j.scitotenv.2023.169421.
]Search in Google Scholar
[
Qi, J. Y., Yang, S. T., Xue, J. F., Liu, C. X., Du, T. Q., Hao, J. P., & Cui, F. Z. (2018). Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China. Journal of Cleaner Production, 187, 525-536.. https://doi.org/10.1016/j.jclepro.2018.02.184.
]Search in Google Scholar
[
Rashidov, N., Chowaniak, M., Niemiec, M., Mamurovich, G. S., Gufronovich, M. J., Gródek-Szostak, Z., ... & Komorowska, M. (2021). Assessment of the multiannual impact of the grape training system on GHG emissions in north Tajikistan. Energies, 14(19), 6160. https://doi.org/10.3390/en14196160.
]Search in Google Scholar
[
Šarauskis, E., Masilionytė, L., Juknevičius, D., Buragienė, S., & Kriaučiūnienė, Z. (2019). Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation. Energy, 172, 1151-1160. https://doi.org/10.1016/j.energy.2019.02.067.
]Search in Google Scholar
[
Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7, 100215. https://doi.org/10.1016/j.fufo.2023.100215.
]Search in Google Scholar
[
Shao, H. (2024). Agricultural greenhouse gas emissions, fertilizer consumption, and technological innovation: A comprehensive quantile analysis. Science of The Total Environment, 926, 171979. https://doi.org/10.1016/j.scitotenv.2024.171979.
]Search in Google Scholar
[
Taft, H. E., Cross, P. A., Hastings, A., Yeluripati, J., & Jones, D. L. (2019). Estimating greenhouse gases emissions from horticultural peat soils using a DNDC modelling approach. Journal of environmental management, 233, 681-694. https://doi.org/10.1016/j.jenvman.2018.11.113.
]Search in Google Scholar
[
Thiagarajan, A., Liang, C., MacDonald, J. D., Smith, W., VandenBygaart, A. J., Grant, B., ... & Fan, J. (2022). Prospects and challenges in the use of models to estimate the influence of crop residue input on soil organic carbon in long-term experiments in Canada. Geoderma Regional, 30, e00534. https://doi.org/10.1016/j.geodrs.2022.e00534.
]Search in Google Scholar
[
TS-EN ISO 14067 Greenhouse Gases -Carbon Footprint of Products- Requirements. and Guidelines for Quantification and Communication. International Organization for Standardization, Geneva.
]Search in Google Scholar
[
Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., Conchedda, G., ... & Torero, M. (2022). Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 14(4), 1795-1809.. https://doi.org/10.5194/essd-14-1795-2022.
]Search in Google Scholar
[
Tubiello, F. N., Rosenzweig, C., Conchedda, G., Karl, K., Gütschow, J., Xueyao, P., ... & Sandalow, D. (2021). Greenhouse gas emissions from food systems: building the evidence base. Environmental Research Letters, 16(6), 065007.
]Search in Google Scholar
[
Wang, C., Gao, Z., Zhao, J., Feng, Y., Laraib, I., Shang, M., ... & Chu, Q. (2022). Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production. Agricultural Water Management, 260, 107331.
]Search in Google Scholar
[
World Population Prospects 2024: Summary of Results.
]Search in Google Scholar
[
Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J., & Guo, J. (2021). Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 275, 109710. https://doi.org/10.1016/j.scienta.2020.109710.
]Search in Google Scholar
[
Yang, Y., Liang, S., Yang, Y., Xie, G. H., & Zhao, W. (2022). Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China. Applied Energy, 305, 117854. https://doi.org/10.1016/j.apenergy.2021.117854.
]Search in Google Scholar
[
Zhang, H., Liang, Q., Peng, Z., Zhao, Y., Tan, Y., Zhang, X., & Bol, R. (2023). Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system. Agricultural Water Management, 282, 108281. https://doi.org/10.1016/j.agwat.2023.108281.
]Search in Google Scholar
[
Zhang, Z., Wang, Z., Li, J., Liu, H., Wang, X., & Li, W. (2024). Comparison of water footprint and carbon footprint of corn, soybean, camelina, and canola for the preparation of sustainable aviation fuels in Gansu Province, China. Journal of Cleaner Production, 475, 143743. https://doi.org/10.1016/j.jclepro.2024.143743.
]Search in Google Scholar
[
Zhang, Z., Yu, Z., Zhang, Y., & Shi, Y. (2021). Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil and Tillage Research, 214, 105167. https://doi.org/10.1016/j.still.2021.105167.
]Search in Google Scholar