Open Access

Changes in Isoflavonoid and Flavonoid Content in Soybean Leaves Affected by UV-B or Copper


Cite

Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., and Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology, 168(3), 204 – 212. DOI:10.1016/j.jplph.2010.07.016. Search in Google Scholar

Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., and Tattini, M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35 – 45. DOI:10.1016/j. plaphy.2013.03.014. Search in Google Scholar

Agati, G., Stefano, G., Biricolti, S., and Tattini, M. (2009). Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Annals of Botany, 104(5), 853 – 861. DOI:10.1093/ aob/mcp177. Search in Google Scholar

Babu, T. S., Akhtar, T. A., Lampi, M. A., Tripuranthakam, S., Dixon, D. G., and Greenberg, B. M. (2003). Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant and Cell Physiology, 44(12), 1320 – 1329. DOI:10.1093/pcp/pcg160. Search in Google Scholar

Berli, F. J., Moreno, D., Piccoli, P., Hespanhol-Viana, L., Silva, M. F., Bressan-Smith, R., Cavagnaro, J. B., and Bottini, R. (2010). Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 33(1), 1 – 10. DOI:10.1111/j.13653040.2009.02044.x. Search in Google Scholar

Bidel, L. P., Chomicki, G., Bonini, F., Mondolot, L., Soulé, J., Coumans, M., La Fisca, P., Baissac, Y., Petit, V., Loiseau, A., Cerovic, Z. G., Gould, K. S., and Jay-Allemand, C. (2015). Dynamics of flavonol accumulation in leaf tissues under different UV-B regimes in Centella asiatica (Apiaceae). Planta, 242(3), 545 – 559. DOI:10.1007/s00425-015-2291-7. Search in Google Scholar

Carrera, C. S. and Dardanelli, J. L. (2016). Changes in the relationship between temperature during the seed-filling period and soya bean seed isoflavones under water-deficit conditions. Journal of Agronomy and Crop Science, 202(6), 421 ‒ 432. DOI:10.1111/jac.12147. Search in Google Scholar

Chan, C. and Lam, H. M. (2014). A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant and Cell Physiology, 55(3), 570 ‒ 579. DOI: 10.1093/pcp/pct201. Search in Google Scholar

Chennupati, P., Seguin, P., Chamoun, R., and Jabaji, S. (2012). Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. Journal of Agricultural Food Chemistry, 60(51), 12421 ‒ 7. DOI:10.1021/jf3036319. Search in Google Scholar

Chu, S., Wang, J., Zhu, Y., Liu, S., Zhou, X., Zhang, H., Wang, C. E., Yang, W., Tian, Z., Cheng, H., and Yu, D. (2017). An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics, 13(5), e1006770. DOI:10.1371/journal.pgen.1006770. Search in Google Scholar

Dobrikova, A. G. and Apostolova, E. L. (2015). Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH. Journal of Plant Physiology, 184, 98 ‒ 105. DOI:10.1016/j. jplph.2015.06.008. Search in Google Scholar

Du, H., Huang, Y. and Tang, Y. (2010). Genetic and metabolic engineering of isoflavonoid biosynthesis. Applied microbiology and Biotechnology, 86(5), 1293 – 1312. DOI: 10.1007/s00253-010-2512-8. Search in Google Scholar

Dwiecki, K., Neunert, G., Polewski, P., and Polewski, K. (2009). Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. Journal of Photochemistry and Photobiology B, 96(3), 242 ‒ 248. DOI:10.1016/j. jphotobiol.2009.06.012. Search in Google Scholar

Ebisawa, M., Shoji, K., Kato, M., Shimomura, K., Goto, F., and Yoshihara, T. (2008). Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Environment Control in Biology, 46, 1 ‒ 11. DOI:10.2525/ecb.46.1. Search in Google Scholar

Eichholz, I., Rohn, S., Gamm, A., Beesk, N., Herppich, W., Kroh, L., Ulrichs, Ch., and Huyskens-Keil, S. (2012). UV-B-mediated flavonoid synthesis in white asparagus (Asparagus oficinalis L.). Food Research International, 48(1), 196 – 201. DOI:10.1016/j.foodres.2012.03.008. Search in Google Scholar

Flint, S. D. and Caldwell, M. M. (2003). A biological spectral weighting function for ozone depletion research with higher plants. Journal of Plant Physiology, 117(1), 137 – 144. DOI:10.1562/0031-8655(2004)79<399:sftobs>2.0.co;2. Search in Google Scholar

García-Calderón, M., Pons-Ferrer, T., Mrázova, A., Palove-Balang, P., Vilková, M., Pérez Delgado, C., Vega, J., Eliášová, A., Repčák, M., Márquez, A. J., and Betti, M. (2015). Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Frontiers in Plant Science, 6, 760. DOI:10.3389/ fpls.2015.00760. Search in Google Scholar

Gutierrez-Gonzalez, J. J., Guttikonda, S. K., Tran, L. S., Aldrich, D. L., Zhong, R., Yu, O., Nguyen, H. T. and Sleper, D. A. (2010). Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant and Cell Physiology 51(6), 936 ‒ 48. DOI:10.1093/pcp/pcq065. Search in Google Scholar

Hofmann, R., Swinny, E., Bloor, S., Markham, K., Ryan, K., Campbell, B., Jordan, B., and Fountain, D. (2000). Responses of nine Trifolium repens L. populations to ultraviolet-B radiation: Differential flavonol glycoside accumulation and biomass production. Annals of Botany, 86(3), 527 ‒ 537. DOI:10.1006/anbo.2000.1216. Search in Google Scholar

Jacobo-Velázquez, D. and Cisneros-Zevallos, L. (2009). Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. Journal of Food Science, 74(9), 107 ‒ 113. DOI:10.1111/j.1750-3841.2009.01352.x. Search in Google Scholar

Jańczak-Pieniążek, M., Migut, D., Piechowiak, T., Buczek, J., and Balawejder, M. (2021). The effect of exogenous application of quercetin derivative solutions on the course of physiological and biochemical processes in wheat seedlings. International Journal of Molecular Sciences 22(13), 6882. DOI:10.3390/ijms22136882. Search in Google Scholar

Jeandet, P., Clément, C., Courot, E., and Cordelier, S. (2013). Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. International Journal of Molecular Sciences, 14(7), 14136 ‒ 70. DOI:10.3390/ijms140714136. Search in Google Scholar

Kaducová, M., Eliašová, A., Trush, K., Bačovčinová, M., Sklenková, K., and Pal’ove-Balang, P. (2022). Accumulation of isoflavonoids in Lotus corniculatus after UV-B irradiation. Theoretical and Experimental Plant Physiology, 34, 53 ‒ 62. DOI:10.1016/j.jplph.2019.03.003. Search in Google Scholar

Kaducová, M., Monje-Rueda, M. D., García-Calderón, M., Pérez-Delgado, C. M., Eliášová, A., Gajdošová, S., Petruľová, V., Betti, M., Márquez, A. J., and Paľove-Balang, P. (2019). Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. Journal of Plant Physiology, 236, 88 – 95. DOI:10.1016/j.jplph.2019.03.003. Search in Google Scholar

Karlíčková, J., Macáková, K., Říha, M., Pinheiro, L. M., Filipský, T., Horňasová, V., Hrdina, R., and Mladěnka, P. (2015). Isoflavones reduce copper with minimal impact on iron in vitro. Oxidative Medicine ans Cellular Longevity, 2015, 437381. DOI:10.1155/2015/437381. Search in Google Scholar

Kim, S.-H., Jung, W.-S., Ahn, J.-K., Kim, J.-A., and Chung, I.-M. (2005). Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, CO2 level and N application. Journal of the Science of Food and Agriculture, 85(15), 2557 – 2566. DOI:10.1002/jsfa.2294. Search in Google Scholar

Kitamura, K., Igita, K., Kikuchi, A., Kudou, S., and Okubo, K. (1991). Low isoflavone content in some early maturing cultivars, so-called summer-type soybeans (Glycine max (L.) Merrill). Japanese Journal of Breeding, 41(4), 651 – 654. DOI:10.1270/jsbbs1951.41.651. Search in Google Scholar

Kostyuk, V. A., Potapovich, A. I., Strigunova, E. N., Kostyuk, T. V., and Afanas’ev, I. B. (2004). Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Archives of Biochemistry and Biophysics, 428(2), 204 ‒ 208. DOI:10.1016/j.abb.2004.06.008. Search in Google Scholar

Kreft, S., Strukelj, B., Gaberscik, A., and Kreft, I. (2002). Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany, 53(375), 1801 – 1804. DOI:10.1093/jxb/erf032. Search in Google Scholar

Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K., and Fernie, A. R. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. The Plant Journal, 67(2), 354 – 369. DOI:10.1111/j.1365-313X.2011.04599.x. Search in Google Scholar

Lee, S., Kim, H. W., Lee, S. J., Kwon, R. H., Na, H., Kim, J. H., Choi, Y. M., Yoon, H., Kim, Y. S., Wee, C. D., Yoo, S. M., and Lee, S. H. (2022). Comprehensive characterization of flavonoid derivatives in young leaves of core-collected soybean (Glycine max L.) cultivars based on high-resolution mass spectrometry. Scientific Reports, 12(1), 14678. DOI: 10.1038/s41598-022-18226-4. Search in Google Scholar

Lim, Y. J., Jeong, H. Y., Gil, C. S., Kwon, S. J., Na, J. K., Lee, C., and Eom, S. H. (2020) Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chemistry, 303, 125376. DOI:10.1016/j.foodchem.2019.125376. Search in Google Scholar

Lozovaya, V. V., Lygin, A. V., Ulanov, A. V., Nelson, R. L., Daydé, J., and Widholm, J. M. (2005). Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Science, 45(5), 1934 – 1940. DOI:10.2135/CROPSCI2004.0567. Search in Google Scholar

Ma, M., Wang, P., Yang, R., and Gu, Z. (2018). Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B. Food Chemistry, 250, 259 ‒ 267. DOI: 10.1016/j.foodchem.2018.01.051. Search in Google Scholar

Ma, M., Wang, P., Yang, R., Zhou, T., and Gu, Z. (2019). UV-B mediates isoflavone accumulation and oxidative-antioxidant system responses in germinating soybean. Food Chemistry, 275, 628 ‒ 636. DOI:10.1016/j.foodchem.2018.09.158. Search in Google Scholar

Mahajan, M. and Yadav, S. K. (2013) Effect of quercetin and epicatechin on the transcript expression and activity of antioxidant enzymes in tobacco seedlings. American Journal of Biochemistry and Molecular Biology, 3(1), 81 ‒ 90. DOI:10.3923/ajbmb.2013.81.90. Search in Google Scholar

Mierziak, J., Kostyn, K. and Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules (Basel, Switzerland), 19(10), 16240 – 16265. DOI:10.3390/molecules191016240. Search in Google Scholar

Mrázová, A., Belay, S., Eliášová, A., Pérez-Delgado, C., Kaducová, M., Betti, M., Vega, J. M., and Paľove-Balang, P. (2017). Expression, activity of phenylalanine-ammonia-lyase and accumulation of phenolic compounds in Lotus japonicus under salt stress. Biologia, 72(1), 36 – 42. DOI: 10.1515/biolog-2017-0001. Search in Google Scholar

Ryan, K. G., Swinny, E. E., Markham, K. R., and Winefield, C. (2002). Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 59(1), 23 – 32. DOI:10.1016/s0031-9422(01)00404-6. Search in Google Scholar

Siipola, S. M., Kotilainen, T., Sipari, N., Morales, L. O., Lindfors, A. V., Robson, T. M. and Aphalo, P. J. (2015). Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell and Environment, 38(5), 941 ‒ 52. DOI: 10.1111/pce.12403. Search in Google Scholar

Stracke, R., Jahns, O., Keck, M., Tohge, T., Niehaus, K., Fernie, A. R., and Weisshaar, B. (2010). Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. The New Phytologist, 188(4), 985 – 1000. DOI:10.1111/j.1469-8137.2010.03421.x. Search in Google Scholar

Swigonska, S., Amarowicz, R., Król, A., Mostek, A., Badowiec, A., and Weidner, S. (2014). Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity. Acta Societatis Botanicorum Poloniae, 83(3), 209 ‒ 218. DOI: 10.5586/asbp.2014.026. Search in Google Scholar

Tattini, M., Guidi, L., Morassi-Bonzi, L., Pinelli, P., Remorini, D., Degl’Innocenti, E., Giordano, C., Massai, R., and Agati, G. (2005). On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. The New Phytologist, 167(2), 457 – 470. DOI:10.1111/j.1469-8137.2005.01442.x. Search in Google Scholar

Trush, K., Kaducová-Králiková, M., Kukučková, L., and Paľove-Balang, P. (2020). Effect of low pH and aluminium on exudation of organic acids and flavonoids in Lotus japonicus. Biodiversity & environment, 12(1), 16 ‒ 25. Search in Google Scholar

Trush, K. and Paľove-Balang, P. (2023). Biosynthesis and role of isoflavonoids in legumes under different environmental conditions. Plant Stress, 8, 100153. DOI:10.1016/j. stress.2023.100153. Search in Google Scholar

Vyn, T. J., Yin, X. H., Bruulsema, T. W., Jackson, C. J. C., Rajcan, I., and Brouder, S. M. (2002). Potassium fertilization effects on isoflavone concentrations in soybean (Glycine max (L.) Merr.). Journal of Agricultural and Food Chemistry, 50(12), 3501 – 3506. DOI:10.1021/jf0200671. Search in Google Scholar

Yao, Y. A., Zu, Y. Q. and Li, Y. (2006). Effects of quercetin and enhanced UV-B radiation on the soybean (Glycine max) leaves. Acta Physiologiae Plantarum, 28(1), 49 – 57. DOI: 10.1007/s11738-006-0068-0. Search in Google Scholar

Zavala, J. A., Mazza, C. A., Dillon, F. M., Chludil, H. D. and Ballaré, C. L. (2015). Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions. Plant, Cell & Environment, 38(5), 920 – 928. DOI:10.1111/pce.12368. Search in Google Scholar

Zhuang, W. B., Li, Y. H., Shu, X. C., Pu, Y. T., Wang, X. J., Wang, T., and Wang, Z. (2023). The classification, molecular structure and biological biosynthesis of flavonoids, and their roles in biotic and abiotic stresses. Molecules, 28(8), 3599. DOI:10.3390/molecules28083599. Search in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other